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8:00am HC+AS+SS-ThM-1 Mechanistic Understanding and Catalyst Design 
for Selective Methane Activations, Ping Liu, Brookhaven National 
Laboratory INVITED 

The development of variable catalysts to promote the activation of 
methane and control the conversion selectivity has long been a challenge 
in catalysis. One of the obstacles is the lacking in fundamental 
understanding of reaction network due to the complexity. Here, the 
mechanistic study of methane activation to carbon monoxide and/or 
methanol on metal/oxide and oxide/oxide will be presented using 
combined Density Functional Theory and kinetic Monte Carlo simulation. 
Our results not only provide new insight into the mechanism and active 
sites, but also highlight the importance of confined active site in tuning the 
binding of intermediates and promoting the catalytic performance. 

8:40am HC+AS+SS-ThM-3 A First Principles Study of Propane 
Dehydrogenation Reactions on Hydroxyl-Terminated Al2O3 Decorated 
Platinum Surfaces, Sumandeep Kaur, H. Nguyen, L. Árnadóttir, Oregon 
State University 

Propylene is precursor of many complex chemicals such as polypropylene, 
propylene oxide, acrylonitrile etc. which are used in the fabrication of 
numerous consumer and industrial products. Catalytic dehydrogenation of 
propane has been proposed as a practical route for propylene production 
and metal catalysts such as Pt, Pd and Sn have been extensively employed 
for this purpose. Recent experimental studies have shown that tailoring 
metal-active sites with atomic layer deposition (ALD) can increase the 
selectivity of propane dehydrogenation (PDH) towards propylene.1 Herein 
we use DFT and microkinetic modeling to study PDH on Pt surfaces covered 
with Al2O3 to investigate the effect of ALD on PDH. Our primary results 
show that alumina ALD covers 1/6 of the planar surface Pt(111) blocking all 
the active sites for propane dehydrogenation while on the step or kink 
surfaces, (Pt(211), Pt(321), Pt(533)) alumina ALD forms a one-dimensional 
ribbon like structure along the step or kink atoms, leaning over the lower 
terrace and leaves room on the upper terrace for the reaction 
intermediates to interact with the ALD layer and the metal catalyst. These 
studies on PDH reactions on ALD covered Pt can lead to better 
understanding on how ALD can be used to tailor catalytic active sites and 
improve selectivity. 

1 Lu et al. ACS Catal. 2020, 10,23, 13957 

9:00am HC+AS+SS-ThM-4 Atomic-Level Studies of C2H4 on clean and Rh1-
Decorated Fe3O4(001), Panukorn Sombut, L. Puntscher, C. Wang, M. 
Ulreich, TU Wien, Austria; M. Meier, University of Vienna, Austria; J. 
Pavelec, Z. Jakub, F. Kraushofer, M. Schmid, U. Diebold, TU Wien, Austria; C. 
Franchini, University of Vienna, Austria; G. Parkinson, TU Wien, Austria 

The local binding environment of metal-oxide supported single-atom 
catalysts (SACs) determines how reactants adsorb and therefore plays a 
decisive role in catalysis. Here, we study how Fe3O4(001)-supported Rh1 
adatoms interact with ethylene (C2H4) using density functional theory, 
combined with temperature-programmed desorption (TPD), x-ray 
photoelectron spectroscopy (XPS) and scanning tunneling microscopy 
(STM) techniques. C2H4 is the simplest alkene molecule, and thus a model 
reactant for hydrogenation and hydroformylation reactions. Our study 
begins with the clean Fe3O4(001) surface1, where C2H4 binds weakly. We 
identify and model different molecule orderings at different coverages that 
agree nicely with STM images, as well as explain the experimental TPD 
data. Then, we study C2H4 adsorption at 2- and 5-fold coordinated Rh sites 
at the Fe3O4(001) surface, and show that the local environment has a 
strong effect on the adsorption properties: 2-fold Rh can adsorb two C2H4 
molecules, while 5-fold Rh can only host a single C2H4 molecule. Finally, we 
investigate coadsorption of C2H4 with CO, a vital step towards enabling the 
hydroformylation reaction, and show that this is feasible only at 2-fold 
coordinated Rh sites. 
 

1. Bliem, R. et al. Subsurface cation vacancy stabilization of the magnetite 
(001) surface. Science 346, 1215–1218 (2014). 

9:20am HC+AS+SS-ThM-5 How the Support Dictates the Reactivity of 
FeOx-Based Single-Atom Catalysts, Matthias Meier, TU Wien, Austria
 INVITED 

Single-atom catalysts are often supported by cheap oxides, such as iron 
oxides. As a model system[1], magnetite (Fe3O4), specifically its (001) facet 
has been used because it offers stable sites for single-atom adsorption up 
to high temperatures[2]. Here, I will demonstrate how important the 
support is for the stability of single-atoms, as well as their catalytic 
properties. 

Rh and Ir single-atoms utilize Fe vacancies in the subsurface of the 
reconstructed Fe3O4(001) unit cell to incorporate into the surface layer. 
Changing the positions of Fe atoms in the support as part of the 
incorporation process enables the single-atoms to be accommodated in a 
more favorable configuration than if they were adsorbing on top of the 
surface. Their catalytic properties are drastically affected by changes in the 
atomic environment. Incorporation temperatures vary depending on both 
coverage and the presence or absence of adsorbates, such as CO. 

Changes in the support can affect not only ground states, but also reaction 
mechanisms and activation barriers. Pt single-atoms become mobile upon 
CO adsorption, forming dimers, which oxidize CO via a Mars van Krevelen 
reaction using a surface oxygen atom[3]. The support is temporarily 
altered, reducing overall activation barriers and permitting CO oxidation 
otherwise inaccessible at the observed experimental temperatures. 

Similarly, subsurface vacancies are also present in Fe3O4(111), modifying 
electronic surface states and allowing again for easy incorporation of 
single-atoms already at low temperatures, in line with experimental 
observations. 

References 
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Schneider, M. Schmid, U. Diebold, P. Blaha, L. Hammer, and G. S. Parkinson, 
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Parkinson, ACS Nano 8, 7531 (2014). [3] M. Meier, J. Hulva, Z. Jakub, F. 
Kraushofer, M. Bobić, R. Bliem, M. Setvin, M. Schmid, U. Diebold, C. 
Franchini, and G. S. Parkinson, Sci. Adv. 8, 4580 (2022). 

11:00am HC+AS+SS-ThM-10 Modifying Ethane Oxidation Selectivity on 
the stoichiometric IrO2(110) surface through anion substitution, Aravind 
Asthagiri, The Ohio State University INVITED 

Selective alkane conversion to high value fuels or chemicals, such as 
methanol or ethylene, has drawn increasing interest due to abundance of 
natural gas. Recently, we reported a combined temperature programmed 
reaction spectroscopy (TPRS) and density functional theory (DFT) study of 
below room temperature (T ~ 120 K) activation of methane on the 
stoichiometric IrO2(110) surface under ultrahigh vacuum (UHV) conditions. 
Subsequent work also showed that ethane to ethylene selectivity could be 
increased on IrO2(110) by creating some proportion of hydrogenated 
bridging oxygen (Obr-H) sites, which limit the oxidative capacity of the 
surface. This past work suggests that substitution of Obr sites with inert 
species may be an avenue to control selectivity between full and partial 
oxidation. We have used DFT to explore the effects of Cl substitution of Obr. 
Chlorine is isoelectronic to Obr-H and selective Cl substitution of Obr has 
been demonstrated on RuO2(110) by Over and co-workers. In this work, we 
apply DFT to explore selective conversion of ethane on Cl-doped IrO2(110). 
We find that the Cl-doped IrO2(110) is still facile in converting ethane to 
ethylene. In contrast, the ethylene selectivity step shows a strong effect 
due to Cl doping. Specifically, we find that H atom transfer from ethylene 
to the saturated Obr sites is unfavorable and therefore Cl doping will 
promote ethylene desorption over further reaction. DFT derived 
microkinetic simulations show that the selectivity of ethylene peaks at 
~60% Cl substitution with increasing Cl substitution reducing the reactivity 
of ethane. Extending this work to other halogen anion substitutions (F, Br, 
I) shows that Cl is the optimal dopant. While Br and I favor ethylene 
desorption over further reaction, these dopants decrease ethane reactivity. 
In contrast, F dopant does not promote ethylene desorption versus 
reactivity as effectively as Cl. Current efforts to develop a microkinetic 
model to explore ethylene selectivity under reaction conditions will be 
discussed. 



Thursday Morning, November 10, 2022 

Thursday Morning, November 10, 2022 2 8:00 AM 

11:40am HC+AS+SS-ThM-12 HC Graduate Student Finalist Talk: Insight 
into Subsurface Adsorption and Reconstruction of Ag(111) Deduced from 
a Lattice-Gas Model and Monte Carlo Simulations, Carson Mize, University 
of Tennessee Knoxville; L. Crosby, Joint Institute for Computational 
Sciences; University of Tennessee Knoxville; E. Lander, S. Roy, University of 
Tennessee Knoxville 

Gas-phase surface models are a beneficial, theoretical tool for providing 
qualitative insight into elementary steps of surface chemistry. Elementary 
steps, like adsorption, play a crucial role in many chemical phenomena like 
surface reconstruction and industrial heterogeneous catalysis. While there 
exist many previously developed gas-phase adsorption models, most 
models are limited to low adsorbate coverages due to the computational 
cost required to produce high coverage models. To investigate adsorption 
over a broad range of adsorbate coverages on a crystalline solid, we have 
developed a lattice-gas adsorption model that includes surface and 
subsurface adsorption, tunable interaction parameters calculated with 
density functional theory, and larger scale modeling with Monte Carlo 
simulations. This model has been applied to study oxygen adsorption on a 
Ag(111) surface, due to experimental findings suggesting the possibility of 
subsurface-adsorbed oxygen species. Our first model iteration included 
only strongest binding sites for each region and our simulations indicated 
greater oxygen accumulation in the second subsurface than the first 
subsurface in total coverages in excess of 0.375 monolayer (ML). Our 
second model iteration included all high symmetry sites in each region and 
found the same qualitative results as the first model using canonical Monte 
Carlo distributions. Additionally, current grand canonical distributions 
suggest some subsurface oxygen adsorption exists under temperatures of 
475 – 550 K and pressures of 1 – 2 bar, which are typical industrial 
conditions for catalysis with these systems. Our current model includes 
adding Ag – Ag and Ag – O interactions to model surface reconstruction, as 
our previous models only included the unreconstructed silver lattice. This 
iteration will allow us to study the role of surface and subsurface oxygen in 
inducing well-known surface reconstructions of Ag(111), such as p(4 × 4) 
and c(4 × 8) lattices, as a function of surface temperature and oxygen 
pressure using Monte Carlo simulations. 

12:00pm HC+AS+SS-ThM-13 Measuring and Predicting a Key Catalyst-
Performance Descriptor for Supported Metal Nanoparticle Catalysts: 
Metal Chemical Potential, Charles T. Campbell, J. Rumptz, K. Zhao, 
University of Washington 

Metal nanoparticles supported on high-area oxides and carbons form the 
basis for many catalysts and electrocatalysts. Their activity and stability 
depend on both particle size and choice of support. The chemical potential 
of the metal atoms in the catalyst material quantifies their stability and is a 
convenient descriptor that captures the effects of both the nanoparticle 
size and the support material on both surface reactivity and sinter 
resistance.1,2 This chemical potential enters quantitatively into the rate 
equations for sintering, making a negative contribution to the activation 
energy.2 Numerous experimental and theoretical studies have also found 
that the stability of metal atoms in catalyst materials, including alloys, 
correlates with their binding energies to adsorbates, whereby surface 
metal atoms that are more weakly bound to the solid interact more 
strongly with small adsorbates like O, CO, -OH and –CH3.1-3 It is thus 
desirable to develop methods to predict how metal chemical potential 
depends on particle size and support. Herein, we report calorimetric 
measurements of: (1) metal chemical potential as a function of particle size 
and support, and (2) the adhesion energy of the solid metals to different 
oxide and carbon supports.From these, we have identified predictive 
correlations of: (1) metal chemical potential in supported nanoparticles as 
a function of the particle size and the adhesion energy of the particle to the 
support, and (2) the dependence of this adhesion energy upon the metal 
element in the catalyst for oxide supports. 

Work supported by DOE-OBES Chemical Sciences Division. 
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(2013).  

2. Campbell, C. T. and Mao, Z. ACS Catalysis, 7, 8460 (2017). See 
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