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8:20am HC+AS+SS-WeM-2 Development and Characterization of Highly 
Stable ALD Coated Catalysts for Dehydrogenation of Light Alkanes, 
Jonathan Travis, J. Burger, A. Dameron, Forge Nano 

Catalysts are critical materials for enabling many modern industrial 
chemical processes, such as the dehydrogenation of light alkanes to 
produce “on purpose” alkenes. Catalyst deactivation costs the chemical 
industry billions of dollars. One of the major mechanisms of deactivation is 
metal sintering during high temperature regeneration. Atomic Layer 
Deposition (ALD) overcoating has previously been demonstrated to 
stabilize catalyst materials against sintering and deactivation, as well as 
improve selectivity in certain cases. In this study the properties and 
performance of 0.1% Pt/Al2O3 catalysts are investigated as a function of 
surface modification via ALD Al2O3 coatings. The catalysts are characterized 
in Forge Nano’s in-house catalyst characterization laboratory. Physical 
characterization is performed using various techniques including moisture 
analysis, BET Surface Area, Porosimetry, TGA, CO Chemisorption, ICP-MS, 
and Temperature Programmed Reduction, Desorption, and Oxidation. 
Performance is characterized using propane dehydrogenation under a 
variety of conditions. This talk will present the effects of Forge Nano’s ALD 
Al2O3 coating on the properties and performance of the 0.1% Pt/Al2O3 
catalysts. 

8:40am HC+AS+SS-WeM-3 Combining Theory with Ambient Pressure XPS 
to Reveal Chemistry at Interfaces Under In Situ and Operando Conditions, 
Ethan Crumlin, Lawrence Berkeley National Laboratory INVITED 

Interfaces play an essential role in nearly all aspects of life and are critical 
for electrochemistry. Electrochemical systems ranging from high-
temperature solid oxide fuel cells (SOFC) to batteries to capacitors have a 
wide range of essential interfaces between solids, liquids, and gases which 
play a pivotal role in how energy is stored, transferred, and converted. This 
talk will focus on using ambient pressure XPS (APXPS) to directly probe the 
solid/gas and solid/liquid electrochemical interface. APXPS is a photon-
in/electron-out process that can provide both atomic concentration and 
chemical-specific information at pressures greater than 20 Torr. Using 
synchrotron X-rays at Lawrence Berkeley Nation Laboratory, the Advanced 
Light Source has several beamlines dedicated to APXPS endstations that are 
outfitted with various in situ/operando features such as heating to 
temperatures > 500 °C, pressures greater than 20 Torr to support 
solid/liquid experiments and electrical leads to support applying electrical 
potentials support the ability to collect XPS data of actual electrochemical 
devices while it's operating in near ambient pressures. This talk will share 
our efforts to combine theory and APXPS to understand the chemistry at 
solid/gas and solid/liquid interfaces under in situ and operando conditions. 
At the solid/gas interface, we will share our work to understand how 
carbon dioxide interacts with copper and silver surfaces using APXPS and 
theory to generate observables that we could experimentally verify. 
Separately I will introduce our strategy to introduce a chemical reaction 
network to generate spectra of water interacting with a silver surface that 
directly resembled our APXPS measurements. At the solid/liquid interface, 
the combination of theory and APXPS revealed how stable magnesium 
electrodes and stable diglyme electrolytes could be unstable when in 
contact with each other. In addition, it facilitated the prediction of the 
sensitivity for probing interfacial chemical species at a solid/liquid 
interface. To further advance these directions and synergy for combining 
theory and experiments, I will show our recent progress in creating an 
interfacial Digital Twin that we hope will rapidly accelerate our 
understanding of interfacial chemistry. 

9:20am HC+AS+SS-WeM-5 The Electrochemical Interface as a Reactive 
Environment to Resynthesize Electrode Surface Chemistry Using the 
Dissolution-Redeposition Dynamics, Feng Lin, Virginia Tech INVITED 

The solid-liquid electrochemical interface offers a two-dimensional 
environment for geometrically confined interfacial reactions to tailor 
electrode surface chemistry under operating conditions. Herein, we 

demonstrate that the dissolution and redeposition kinetics of transition 
metal cations, a ubiquitous phenomenon at the electrochemical interface, 
can be manipulated to regulate the chemical composition and crystal 
structure of the electrode surface as well as the overall electrochemical 
performance. Foreign cations, either added as electrolyte additives or 
dissolved from surface coatings, can rapidly participate in the electrode 
dissolution-redeposition process, and facilitate the establishment of the 
dissolution-redeposition equilibrium. We will present scientific case studies 
in electrocatalysis. Our work expands the control over the electrochemical 
reactions at the solid-liquid interface and provides new insights into 
interfacial studies in electrochemistry, and surface science. 

11:00am HC+AS+SS-WeM-10 Ambient Pressure Spectroscopy of Catalytic 
Porous Nanofilms, C. Eads, MAX IV Laboratory, Sweden; T. Hu, S. Tenney, 
Ashley Head, Brookhaven National Laboratory INVITED 

Porous materials offer an opportunity for catalysis in confined spaces. By 
spatially confining chemistry, reaction dynamics and selectivity can change 
in unknown ways. Two examples will be discussed, including Pt 
nanoparticles embedded in a thin film of the metal-organic framework UiO-
66(NH2) and a two-dimensional silicate on Pd(111). Ambient pressure X-ray 
photoelectron spectroscopy (APXPS) has been used to characterize the 
electronic structure of the Pt-embedded metal-organic framework. CO 
oxidation and CO2 reduction have been followed with IR spectroscopy and 
mass spectrometry. In a second system, the space between a two-
dimensional silicate and a Pd(111) surface promotes more CO oxidation 
than a bare Pd surface. IR spectroscopy shows that the silicate film changes 
the surface adsorbates, resulting in increased CO2 formation, as confirmed 
with mass spectrometry. These results will help enable the rational design 
of materials to spatially confine reactions in a desired way. 
 

11:40am HC+AS+SS-WeM-12 Catalytic Oxidation of Methane on IrO2(110) 
Films, Jovenal Jamir, R. Martin, University of Florida; M. Kim, Yeungnam 
University , Republic of Korea; C. Lee, V. Mehar, University of Florida; A. 
Asthagiri, The Ohio State University; J. Weaver, University of Florida 

In recent years, IrO2(110) films have gained increasing interest for their 
ability to strongly adsorb light alkanes and cleave C-H bonds below room 
temperature. Our group has shown, via ultrahigh vacuum (UHV) 
temperature programmed reaction spectroscopy (TPRS) experiments, that 
initial methane activation occurs at temperatures as low as 100 K and leads 
to the desorption of CO, CO2 and H2O above 400 K. The large temperature 
range over which partially oxidized methane-derived species exist, along 
with the facile nature of C-H bond cleavage motivates further study of 
methane oxidation under catalytically relevant conditions. In this talk I will 
discuss recent kinetic studies performed in a batch reactor to investigate 
the catalytic oxidation of CH4 on IrO2(110) films at gas pressures near 1 Torr 
as well as results of ambient pressure x-ray photoelectron spectroscopy 
(AP-XPS) measurements and molecular simulations. We find that IrO2(110) 
is highly active for the catalytic combustion of CH4 at moderate 
temperatures (500-650 K), with comparable activities to PdO catalysts. Our 
results further show that catalytic CH4 oxidation is mildly activated on 
IrO2(110) and that the catalytic rates depend slightly inversely on the O2 
partial pressure, suggesting that the dissociative chemisorption of O2 is 
more efficient than CH4 activation and acts to blocks CH4 adsorption sites. 
AP-XPS measurements reveal that high coverages of OH groups and CHyO2 
species form on IrO2(110) during CH4 oxidation and that O-rich IrO2(110) 
surfaces are maintained even under highly CH4-rich conditions (up to 95% 
CH4), consistent with efficient O2 adsorption and site competition with CH4. 
Finally, I will discuss how we have combined our AP-XPS results with 
catalytic rate measurements to develop first principles, microkinetic 
models for methane oxidation over IrO2(110). Of particular significance is 
that earlier models did not consider surface CHyO2 species. Our AP-XPS 
results thus inspired efforts to identify additional reactions and determine 
the roles that various adsorbed species play during catalytic CH4 oxidation 
on IrO2(110). Our findings highlight how operando surface spectroscopy 
can provide key guidance for understanding catalytic reaction mechanisms 
and developing accurate kinetic models. 
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12:00pm HC+AS+SS-WeM-13 HC Graduate Student Finalist Talk: Operando 
Observation of Metal Encapsulation Causing Strong Metal-Support 
Interaction at the Pt-Co3O4 Interface, Daeho Kim, Korea Advanced 
Institute of Science and Technology (KAIST) & Institute for Basic Science 
(IBS), Republic of Korea; D. Park, Korea Advanced Institute of Science and 
Technology, Republic of Korea; H. Song, Korea Advanced Institute of 
Science and Technology (KAIST) & Institute for Basic Science (IBS), Republic 
of Korea; B. Jeong, Korea Basic Science Institute (KBSI), Republic of Korea; 
Y. Jung, Korea Advanced Institute of Science and Technology, Republic of 
Korea; J. Park, Korea Advanced Institute of Science and Technology (KAIST) 
& Institute for Basic Science (IBS), Republic of Korea 

Noble metal nanoparticles (NPs) supported on metal oxide (e.g., Co3O4, 
NiO, TiO2, CeO2, and Fe2O3) have been commonly utilized as a 
heterogeneous catalyst for improving catalytic performance and modifying 
the reaction pathway of various catalytic reactions, such as CO oxidation, 
CO2 hydrogenation, and Fischer-Tropsch synthesis. The unique interaction 
at the interface of the metal NP and oxide, which is known as the strong 
metal-support interaction (SMSI), gives synergistic enhancement to the 
catalytic activity. Hence, a fundamental understanding of SMSI with 
bridging pressure and material gaps using operando surface 
characterization is necessary for developing high-performance 
heterogeneous catalysts. 

 
 
Herein, we show the direct evidence of SMSI at the interface of Pt NP and 
Co3O4, utilizing operando surface analysis. The Pt-Co3O4 interfaces were 
prepared as powder catalysts using colloidal Pt NPs embedded on the 
mesoporous Co3O4. The two-dimensional model system is also constructed 
on Co3O4–coated Si wafer via a Langmuir-Blodgett trough to bridge the 
material gap. The surface of prepared Pt-Co3O4 is comprehensively 
characterized under dynamic conditions: a reducing environment (H2 or 
CO) and a catalytic reaction environment (CO + O2). Combining 
computational calculation and the operando surface characterizations 
using ambient pressure X-ray photoelectron spectroscopy, environmental 
transmission electron microscopy, and diffuse reflectance infrared Fourier-
transform spectroscopy, we suggest that the interface between Pt NPs and 
the thin oxide overlayer is a key state of the SMSI enhancing the catalytic 
activity. 
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