Monday Morning, November 7, 2022

MEMS and NEMS Technical Group Room 302 - Session MN+AS+NS+QS+SE-MoM

Dynamics and Engineering of MEMS/NEMS

Moderators: Jürgen Brugger, EPFL, Switzerland, Eva Weig, University of Munich, Germany

9:00am MN+AS+NS+QS+SE-MoM-3 MEMS-Based Surface Nanoengineering Using Thermal AFM Probes: 30 Years and Counting, Jürgen Brugger, École Polytechnique Fédérale de Lausanne, Switzerland INVITED

Soon after the first publication in 1985 of the atomic force microscope (AFM) attempts were made to extend AFM-based surface probing from microscopy to lithography [reviewed in 1]. The potential applications in writing and reading for data storagein the early years served as technology driver and showed remarkable performances [2]. One of the variants of AFM-based writing (and reading) operates a heated nano-tip to perform thermally induced phase changes of materials. The three-fold combination of nano-scale heat localization (30 nm scale), high temperature (~ 500 °C)and particularly fast heating/cooling cycles (10E-6 s) is unique and opens new opportunities for surface engineering and material conversion using heat.In the meantime, nano-tips and cantilevers were further perfected as nanotools to locally induce phase changes in materials for a wide range of exploratory studies. Today, thermal scanning probe lithography (t-SPL) has matured into turn-key systems that can be compared to some extend to electron beam lithography, but without the useof charged particles and without the need for development. The full grasp of potential applications in R&D and production is still growing as the technique is still emerging.

In this talk, we will give first some background how heated AFM probes were initially designed and fabricated that led to today's advanced thermomechanical probe design of micro-cantilevers and nano-tips. The paper will then review some main achievements up to date [3] and then present recent results on t-SPL utilized for 2D materials by our own work [4, 5], and will conclude with some outlook on further challenges in hot-tip nanoengineering.

References:

- [1] R. Garcia, et al. Nature Nanotechnology (2014)
- [2] H. J. Mamin et al. Applied Physics Letters (1992)
- [3] S. T. Howell et al. Microsystems & Nanoengineering (2020)
- [4] X. Liu et al. Advanced Materials (2020)
- [5] X. Liu et al. Nano letters (2020)

10:40am MN+AS+NS+QS+SE-MoM-8 Atomically-Thin MoS₂ Nanoelectromechanical Resonators, R. Yang, Shanghai Jiao Tong University, China; Jaesung Lee, University of Texas at El Paso INVITED With the development of the Internet of Things (IoT), new sensors and signal processing elements that consume near-zero power to operate on resonance, have high tunability and small form factor are necessary. The ultralow mass and large resonance tunability make resonant 2D nanoelectromechanical systems (NEMS) suitable for ultrasensitive mass. force and biomolecular sensing, radio-frequency (RF) front end, and straintunable devices.Further, molybdenum disulfide (MoS₂) resonators only require picowatt level of power for sustaining the strong and stable resonance operations due to their ultralight weight. This opens an opportunity to explore new sensors and signal processing elements for IoT applications that really require near-zero power to operate on resonance, and at the same time, have wide dynamic ranges and tuning ranges. In this talk, we summarize our most recent advances in 2D MoS₂ NEMS resonators.

11:20am MN+AS+NS+QS+SE-MoM-10 Can a Single Nanomechanical Mode Generate a Frequency Comb?, *Eva Weig*, Technical University of Munich, Germany INVITED

Doubly-clamped nanostring resonators excel as high Q nanomechanical systems enabling room temperature quality factors of several 100,000 in the 10 MHz eigenfrequency range. Dielectric transduction via electrically induced gradient fields provides an integrated control scheme while retaining the large mechanical quality factor [1]. Dielectrically controlled nanostrings are an ideal testbed to explore a variety of dynamical phenomena ranging from multimode coupling to coherent control [2]. Here I will focus on the nonlinear dynamics of a single, resonantly driven mode. The broken time reversal symmetry gives rise to the squeezing of the

string's fluctuations. As a result of the high mechanical Q factor, the squeezing ratio is directly accessible from a spectral measurement [3]. It is encoded in the intensities of the two spectral peaks arising from the slow dynamics of the system in the rotating frame. For stronger driving, an onset of self-sustained oscillation is observed which leads to the generation of a nanomechanical frequency comb. The effect is a consequence of a resonantly induced negative effective friction force induced by the drive. This is the first observation of a frequency comb arising solely from a single mode and a single, resonant drive tone [4].

[1] Q. P. Unterreithmeier et al., Nature 458, 1001 (2009)

- [2] T. Faust et al., Nature Physics 9, 485 (2013)
- [3] J. Huber et al., Phys. Rev. X 10, 021066 (2020)
- [4] J. Ochs et al., in preparation

Author Index

Bold page numbers indicate presenter

- B -Brugger, J.: MN+AS+NS+QS+SE-MoM-3, 1 - L -

Lee, J.: MN+AS+NS+QS+SE-MoM-8, 1

— W — Weig, E.: MN+AS+NS+QS+SE-MoM-10, **1** — Y — Yang, R.: MN+AS+NS+QS+SE-MoM-8, 1