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Emerging Materials and Structures for MEMS/NEMS 
Devices 
Moderators: Azadeh Ansari, Georgia Institute of Technology, Yanan Wang, 
University of Nebraska - Lincoln 

1:40pm MN+2D-MoA-1 Phononic Crystals based on Two-Dimensional 
Materials, Yanan Wang, University of Nebraska - Lincoln INVITED 

Thanks to the ultimate thinness, excellent elastic properties, and 
unparalleled advantages in device integration, two-dimensional (2D) 
materials have emerged as compelling candidates for enabling high 
frequency nano-/microelectromechanical systems (NEMS/MEMS). This talk 
will discuss the further exploration of 2D materials in phononic devices, 
such as quasi-1D phononic waveguides and tunable phononic crystal 
lattices, emphasizing their potential applications in quantum information 
processing and quantum sensing systems. 

2:20pm MN+2D-MoA-3 Scaling Acoustics into mm-Wave: Higher-Order 
Lamb Mode Devices in Piezoelectric Thin Films, Ruochen Lu, J. Kramer, S. 
Cho, O. Barrera, The University of Texas at Austin INVITED 

The evolving wireless communication moves to higher frequency bands 
with broader bandwidth for faster data rate. New types of front-end 
elements are required to perform the signal processing at the new bands. 
Acoustic devices are among the processing candidates, thanks to their 
compact footprints and low loss. However, It has been a long-standing 
challenge to scale piezoelectric resonators beyond 6 GHz without 
significantly losing quality factor (Q) and electromechanical coupling (k2). 

Until now, three approaches have been investigated, including reduced 
wavelength, higher-order modes, and multi-layer periodically poled 
piezoelectric films (P3F) structures. The first method requires small feature 
sizes, e.g., the electrode pitch width of laterally vibrating devices or the 
thickness of film bulk acoustic wave resonators (FBARs). The direct scaling 
inevitably leads to fabrication challenges and more importantly, severely 
reduced Q from the electrical resistance and acoustic damping. The second 
approach utilizes the additional thickness component in higher-order Lamb 
modes to relax the lateral feature size requirement. However, sub-400 nm 
piezoelectric thin films are needed if operated at the first-order thickness 
mode, e.g., first-order antisymmetric (A1) mode, inducing limited Q below 
500 from the surface damages during the implementation. Alternatively, 
one can operate at higher frequencies using increased thickness mode 
order acoustic modes, e.g., second-order antisymmetric (A2) mode. 
Nevertheless, further increasing the mode order in the thickness direction 
without modifying the transducer configuration leads to reduced k2, as the 
generated charge tends to cancel out, limiting the applications. 

Recently, we proposed the P3F platforms using thin-film lithium niobate 
(LiNbO3) to address the challenge. By stacking transferred thin-film LiNbO3 
with alternating orientations in the thickness direction, we can achieve 
remarkable frequency scaling without losing k2 or relying on thinner films. 
Complementarily oriented bi-layer acoustic resonator (COBAR) following 
thickness-shear modes have been demonstrated. We will report COBARs 
leveraging the thickness-extensional (TE) modes at 15.8 GHz using sixth-
order antisymmetric (A6) mode COBAR with a high loaded Q of 720. The 
measured loaded Q and f∙Q product (1.14×1013) are among the highest for 
piezoelectric acoustic resonators beyond 6 GHz. 

3:00pm MN+2D-MoA-5 AlScN Piezoelectric Metamaterials for Next 
Generation RF Systems, C. Cassella, Dan Zhao, Northeastern University
 INVITED 

In the last two decades, microacoustic resonators (μARs) have played a key 
role in integrated 1G-to-4G radios, providing the technological means to 
achieve compact radio frequency (RF) filters with low loss and moderate 
fractional bandwidths (BW<4%). More specifically, Aluminum Nitride (AlN) 
based filters have populated the front-end of most commercial mobile 
transceivers due to the good dielectric, piezoelectric and thermal 
properties exhibited by AlN thin-films and because their fabrication process 
is compatible with the one used for any Complementary Metal Oxide 
Semiconductor (CMOS) integrated circuits (ICs). Nevertheless, the rapid 
growth of 5G and the abrupt technologicalleap expected with the 
development of sixth-generation (6G) communication systems are 
expected to severely complicate the design of future radio front-ends by 
demanding Super-High-Frequency (SHF) filtering components with much 

larger fractional bandwidths than achievable today. Even more, the recent 
invention of on-chip nonreciprocal components, like the circulators and 
isolators recently built in slightly different CMOS technologies, has 
provided concrete means to double the spectral efficiency of current radios 
by enabling the adoption of full-duplex communication schemes. 
Nevertheless, for such schemes to be really usable in both military and 
commercial wireless systems, self-interference cancellation networks 
including wideband, low-loss and large group delay lines are needed. Yet, 
the current on-chip delay lines that are also manufacturable through CMOS 
processes, which rely on the piezoelectric excitation of Surface Acoustic 
Waves (SAWs) or Lamb Waves in piezoelectric thin films, have their 
bandwidth and insertion-loss severely limited by the relatively low 
electromechanical coupling coefficient exhibited by their input and output 
transducers. As a results, these components are hardly usable to form the 
delay lines forming any desired self-interference cancelation networks. In 
order to overcome these challenges, only recently, new classes of 
microacoustic resonators and delay lines exploiting the high piezoelectric 
coefficient of Aluminum Scandium Nitride (AlScN) thin films and the exotic 
dispersive features of acoustic metamaterials have been emerging. These 
devices rely on forests of locally resonant piezoelectric rods to generate 
unique modal distributions, as well as unconventional wave propagation 
features that cannot be found in conventional SAW and Lamb wave 
counterparts. In this talk, the design, fabrication and performance of the 
first microacoustic metamaterials based resonators and delay lines will be 
showcased. 

4:00pm MN+2D-MoA-8 Fabrication, Actuation and Control of 3D-Printed 
Microscale Robots, Azadeh Ansari, The Georgia Institute of Technology
 INVITED 

This talk covers the fabrication methods of micro scale robots using two 
photon lithography nanoscale 3D printing of various micro robot designs 
for biomedical applications. The polymer-based 3D printed robots are 
integrated with piezoelectric actuators, or magnetic thin films/cubes. Tiny 
polymer legs/bristles and contacts are designed for precise robot motion 
control. Furthermore, the microbots are equipped with various mechanical 
add-ons such as micro-tips/needles for penetration into soft tissues, 
micromanipulators, micro-drillers, and PH sensitive drug delivery units. 

4:40pm MN+2D-MoA-10 Fabrication of Resistor-based Zinc Devices using 
Selective Chemical Deoxidation of Screen Printed Zinc Inks by Inkjet 
Printing, A. Radwan1, Case Western Reserve University; Y. Sui, University of 
Colorado at Boulder; Christian Zorman, Case Western Reserve University 

Zinc (Zn) is a common metal that harmlessly decomposes in the 
environment and thus is considered a leading metal for use in 
environmentally-friendly electronics. Zn readily oxidizes under ambient 
conditions forming a thin, electrically-insulating zinc-oxide (ZnO) layer on 
the surface of Zn particles. Fortunately, conductive Zn structures can be 
formed by etching the ZnO layer using aqueous solutions of acetic acid 
dispensed by drop casting. Although drop-casting is simple to implement, 
dispensing extremely small volumes is difficult . As such, drop casting is 
limited to producing structures with high conductivity (i.e., electrodes) but 
is not suitable to produce structures with tunable resistivity.Although 
designed to dispense inks, inkjet printers are precision liquid dispensing 
systems capable of depositing picoliter droplets at designated locations. 
Therefore, it is feasible to use an inkjet printer as an acetic acidic dispenser 
to form Zn structures by selective etching of Zn-based inks. Unlike drop 
casting, this reactive inkjet printing (RIJ) process enables the resistivity of 
Zn structures to be tuned by controlling the amount of acetic acid 
dispensed. Moreover, inkjet printing offers precision lateral control of the 
dispensing process which could enable the fabrication of both conductive 
and resistive structures in the same Zn layer. 

In this paper, a selective RIJ method to dispense an etching agent on screen 
printed Zn structures with a high degree of volumetric and spatial control is 
described. This RIJ process is used in conjunction with screen printing to 
precisely control the amount of acetic acid deposited on the surface of 
printed Zn structures. The number of print passes and drop spacing are 
utilized to precisely regulate the exposure of the Zn structures to acetic 
acid thus enabling unparalleled control of the etching process. The screen 
printing and RIJ processes are performed at room temperature, making 
them compatible with temperature sensitive substrates including many 
that are attractive for flexible, implantable and biodegradable electronics. 
The substrate only needs to be inert to acetic acid. This study specifically 
focuses on the formation of Zn structures with tunable resistivity and 
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explores the relationships between key printing parameters and electrical 
resistivity of the resulting Zn structures. As process demonstrators, 
microheaters and RC filters are fabricated and characterized. 

5:00pm MN+2D-MoA-11 Mechanically Tunable One-Dimensional 
Photonic Crystals Fabricated by Two-Photon Polymerization, Victoria P. 
Stinson1, N. Shuchi, M. McLamb, G. Boreman, T. Hofmann, University of 
North Carolina at Charlotte 

Photonic crystals have attracted interest in optical applications, due to 
their highly reflective photonic bandgaps [1-3]. These photonic bandgaps 
are formed by creating a dielectric periodicity. Depending on the 
complexity of this periodicity the photonic crystal can be described as being 
one-, two-, or three-dimensional. In the one-dimensional case, this 
periodicity is created in a single direction. One-dimensional photonic 
crystals fabricated by two photon polymerization have demonstrated high-
contrast photonic bandgaps in the infrared spectral range [2]. This is 
achieved by alternating layers of high- and low-density. In order to allow 
additional spectral filtering of the photonic bandgap, defects have also 
been implemented into these designs, allowing narrow band transmissions 
to exist within the otherwise reflective photonic bandgap [3]. While the 
spectral position of these features can be easily designed for a desired 
range, there are currently few methods for manipulating these features 
post-fabrication. Introducing mechanically sensitive flexures as low-density 
layers into these one-dimensional photonic crystals could fill this gap. 
Opto-mechanical devices fabricated by two-photon polymerization is an 
emerging field which has applications in areas such as MEMS and 
microrobotics [4]. The ability to control the spectral response via an 
external mechanical stimuli opens the door for more complex and 
adaptable sensing and filtering bandgap devices. The use of two-photon 
polymerization in the development of these devices allows for three-
dimensional design freedom with efficient fabrication times. In this study 
we report on the use of sub-wavelength mechanical flexures in the low-
density layers of one-dimensional photonic crystals fabricated by two-
photon polymerization. Upon compression the change in thickness of these 
low-density layers will result in an overall spectral shift of the photonic 
bandgap. The degree of spectral shifting, as well as an analysis of the 
mechanical properties of one-dimensional photonic crystals with flexures 
are presented and discussed. 

[1] H. Shen, Z. Wang, Y. Wu, B. Yang, RSC Adv. 6, 4505-4520 (2016). 

[2] Y. Li, D. Fullager, S. Park, D. Childers, R. Fesperman, G. Boreman, T. 
Hofmann, Opt. Lett. 43, 4711-4714 (2018). 

[3] V.P. Stinson, S. Park, M. McLamb, G. Boreman, T. Hofmann, Optics 2, 
284-291 (2021). 

[4] Z. Lao, N. Xia, S. Wang, T. Xu, L. Zhang, Micromachines 12, 465 (2021). 
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