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8:00am AS+BI+CA+HC+LS+PS+SE+SS-WeM-1 Adhesion Properties of 
Industrial Steel Samples, Lukas Kalchgruber, M. Hahn, L. Mears, M. 
Valtiner, TU Wien, Austria 

Solving industrial questions is of utmost importance to improve material 
properties, developing industrial applications and understanding 
fundamental processes. One of these questions is how different pre-
treatments alter the adhesion process between steel and polymers. 

To study the effect of the pre-treatment on the subsequent adhesion 
process, steel was treated either thermally or via plasma. 

To characterize adhesion, the surface force apparatus (= SFA) was utilized 
in reflection mode. In the SFA experiment, the steel is brought into contact 
with another surface which is prepared on a fused silica optical disc. Before 
the optical discs can be used in SFA, a semitransparent, reflective layer 
needs to be deposited on the curved surface. Additionally, they were spin 
coated with few µm thin, homogeneous, smooth layers of SEBS polymer. 
Afterwards, a suitable particle free contact was established between the 
polymer and the steel sample in the SFA, which generated the following 
data types: 

  

1. Newton rings à Provide information about the contact area  
2. Force data à Adhesive pressure (referenced to contact area)  
3. Fringes of chromatic order (= FECO) à Time-Distance-Curves 
  

The main selling points of this technique are as follows: firstly, the model 
system is very close to the actual problem, as the steel sample in question 
can be used directly. Secondly, direct information about the adhesive 
pressure can be obtained. Thirdly, considerably more information about 
the adhesive behavior of the system is available beyond just one number. 

The SFA results achieved are promising. We have a method that allows us 
to quantify the adhesive pressure in a model system and differentiate 
between differently treated steel samples. We have further put our 
adhesion results into context with the support of XPS characterization of 
the surface. Thermally treated samples have a hydroxide/oxide ratio of 
roughly 50/50 while samples treated with plasma show a ratio of 90/10. 
The hydroxide to oxide ratio correlates with the adhesion measured by 
SFA, which emphasizes the role of hydroxide in preventing adhesion. 

8:20am AS+BI+CA+HC+LS+PS+SE+SS-WeM-2 An Electrochemically 
Polymerized Protective Layer for Magnesium Metal Anode, Y. Wang, 
University of Maryland College Park; Alexander Kozen, University of 
Maryland 

Rechargeable magnesium (Mg) batteries are promising beyond Li-ion 
technologies due to their high volumetric capacity (3832 mAh cm−3) and 
high natural abundance. Nonetheless, Mg metal anode is incompatible with 
most conventional electrolytes which leads to the formation of an ionically 
passivating layer. Mg also suffers from growth of dendrites similar to Li, 
which causes failure of the cells. In this study, we electrochemically 
polymerized 1,3-dioxolane (DOL) to form a thin Mg2+-conducting 
elastomeric artificial solid electrolyte interphase (ASEI) layer by 
electrochemically pretreating Mg metal anodes. We found that this 
protective ASEI layer enables excellent cyclability of Mg-Mg symmetric cells 
at high current density (0.5 mAcm-2) over 400 hours at a stable low 
overpotential (0.50 V vs. Mg2+/Mg) without cell short-circuiting, while 
untreated pristine Mg symmetric cells quickly failed. The formation of this 
ASEI also significantly lowered the impedance of the cells, which proved its 
capability of conducting Mg2+ ions. Comprehensive surface chemistry 
analysis was done by X-ray photoelectron spectroscopy (XPS) which 
showed that an ASEI mainly consists of poly-DOL was formed, along with 
various Mg salts which are instrumental to the conductance of Mg2+ ions. 
More importantly, poly-DOL component in the elastomer was well 
preserved post-cycling, which contributed to the long-term cyclability and 
low voltage hysteresis of pretreated Mg-Mg cells, as compared to the 
pristine ones. Focused ion beam (FIB) – scanning electron microscopy 
(SEM) and energy-dispersive X-ray spectroscopy (EDS) mapping showed 

that a generally uniform layer was formed on the surface and this ASEI is 
roughly 200 μm thick and was able to suppress the growth of Mg dendrites 
after cycling for 400 hours at 0.03 mA cm-2 current density, as compared to 
the rampant sphere-shaped dendrites on the surface of pristine Mg anodes 
after cycling. This is the first ever report on the successful formation of 
poly-DOL ASEI on Mg metal anodes as a protective layer and by 
electrochemical polymerization method that effectively enhanced the 
electrochemical cycling performance of the Mg metal anodes. 
 

8:40am AS+BI+CA+HC+LS+PS+SE+SS-WeM-3 Analysis of Surfaces and 
Interfaces in Polymer Electrolyte Membrane Fuel Cell and Electrolyzer 
Devices, Svitlana Pylypenko, Colorado School of Mines INVITED 

Implementing a hydrogen-based infrastructure depends on developing 
electrochemical energy conversion devices such as fuel cells and 
electrolyzers. Polymer electrolyte membrane fuel cells (PEMFCs) have been 
the focus of research for lightweight renewable transportation applications 
such as motor vehicles for years, but they also offer the potential to fuel 
stationary applications, including residential power, due to their potential 
to produce industrial amounts of energy via a renewable route. Polymer 
electrolyte membrane water electrolysis (PEMWE) is a promising strategy 
to produce and store renewable energy in the form of hydrogen for 
subsequent use in either manufacturing processes, or to run a fuel cell, 
which can generate electricity on demand. 

Great improvements have been made in the development of catalysts and 
electrodes for PEM systems, improving their activity and stability while 
reducing the amount of precious metals used. The properties of the 
electrodes used in these devices are influenced by multiple parameters: 
the chemical identity of the catalyst and the ionomer; the morphological 
properties of the catalyst (e.g. shape and surface area); ink formulations; 
and the various processing parameters used to prepare the electrode. Due 
to the breadth of possible variable combinations and the inherent 
complexity of electrode materials, it is unsurprising that PEM electrodes 
are both morphologically and chemically heterogeneous. Characterization 
of relevant surfaces and interfaces in these devices, therefore, represents a 
challenge that requires a multi-technique approach that evaluates all 
relevant scales and properties and brings a better understanding of the 
evolution of surfaces and interfaces under more realistic conditions. This 
talk will discuss the progress towards the comprehensive characterization 
of the most critical surfaces and interfaces in PEM devices using a 
combination of X-ray and electron spectroscopy and microscopy methods. 
Several challenges related to the characterization of catalyst-gas and 
catalyst-ionomer interactions in these systems will be covered along with 
results obtained with near-ambient pressure x-ray photoelectron 
spectroscopy (nAP-XPS). The development of characterization strategies to 
enable the exploration of a large processing parameter space will be 
presented, which can then be used to fabricate optimized electrodes with 
state-of-the-art catalysts as well as electrodes that integrate novel 
catalysts, all made with scalable routes. And finally, the development of 
novel approaches toward the characterization of other components of PEM 
devices such as porous transport layers will also be briefly discussed. 

9:20am AS+BI+CA+HC+LS+PS+SE+SS-WeM-5 XPS Analysis of Battery 
Materials, Sarah Zaccarine, B. Schmidt, K. Artyushkova, Physical Electronics 
USA; A. Baniya, Q. Qiao, Syracuse University 

Lithium-ion batteries (LIBs) have experienced success including 
rechargeability and long lifetimes but their limited energy density restricts 
applications moving forward. Lithium metal batteries (LMBs) offer similar 
benefits but with much higher achievable energy densities, making them a 
promising future battery technology. Both LIBs and LMBs are multi-layered, 
complex systems with many materials and interfaces that each play a 
critical role in performance and stability. Tuning the composition and 
morphology of these materials is necessary to create stable, high-
performing devices, but the multi-component interfaces, interactions, and 
dynamic nature of these systems makes characterization challenging. In 
order to optimize materials properties and improve battery lifetimes, there 
is a pressing need for physicochemical characterization approaches with 
high spatial resolution, chemical and morphological analysis, and 
correlation of synergistic properties. 

X-ray photoelectron spectroscopy (XPS) is commonly used to characterize 
the chemical composition of battery materials, and the depth resolution 
(~10nm) is ideal for analyzing thin layers and interfaces. However, modern 
XPS instruments have a variety of operating modes and analytical 
accessories that enable characterization across a variety of lateral and 
vertical size regimes. Small and large spot comparisons can track overall 
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composition and local features and changes, with scanning microprobe 
analysis allowing for spatial resolution down to a few microns. X-ray 
induced secondary electron imaging (SXI), including high-resolution mosaic 
imaging over a wide sample area, can be used for easy identification of 
important features and morphological imaging of various battery 
component materials to complement chemical information. Chemical 
mapping can visualize distribution of individual elements or chemical 
species to understand how materials are distributed and change with 
testing. Additional options address stability concerns associated with Li 
materials, including a cooling stage to preserve battery chemistry during 
extended experiment times, where time-resolved profiles are used to 
compare chemical degradation under controlled temperatures, and 
incorporating Al Kα and Cr Kα X-rays for non-destructive XPS and hard X-ray 
photoelectron spectroscopy (HAXPES) analysis of surface (up to ~10nm, Al) 
and subsurface (up to ~30nm, Cr) composition. Combined, these powerful 
capabilities enable thorough characterization of battery materials 
properties for micro- and large-area spectroscopic analysis of surfaces and 
interfaces and how these properties change under various analytical and 
operating conditions. 

9:40am AS+BI+CA+HC+LS+PS+SE+SS-WeM-6 Novel Battery Material 
Analysis with High-Resolution and High-Throughput XPS, J. Counsell, S. 
Coultas, Kratos Analytical Inc., UK; C. Moffitt, Kratos Analytical Inc.; C. 
Blomfield, Kratos Analytical Inc., UK; Adam Roberts, Kratos Analytical 
Limited, UK 

Several material systems will be discussed to give an overview on how XPS 
can yield information regarding the distribution and chemical speciation of 
battery materials. 

Na-ion batteries are considered to be environmentally favourable 
alternatives to Li-ion batteries, particularly in the extremely large-scale 
application of grid storage, given the abundance of Na. However, to date, 
the battery performance has not been competitive, and promising ternary 
materials have been plagued by poor stability in air and unsatisfactory 
long-term cycling. Herein, air/moisture stability is effectively and 
systematically investigated with XPS, paving the way for material stability 
to be modified through rational design. Chemical assignments were 
correlated with performance and oxidation degradation [1] 

The significance of sensitivity and detection limit, comparisons of surface 
and bulk and an approach for pragmatic peak fitting of difficult elemental 
lines will be discussed along with considerations such as etch artefacts and 
degradation. 

[1] Shipeng Jia et al., J. Mater. Chem. A, 2022,10, 251-265 

11:00am AS+BI+CA+HC+LS+PS+SE+SS-WeM-10 Multimodal Analysis and 
Imaging of the Boehmite Layer on AA6061, Lyndi Strange, Pacific 
Northwest National Lab; X. Yu, Oak Ridge National Laboratory; V. 
Shutthahandan, M. Song, Q. Miller, M. Bowden, J. Gao, Y. Zhang, J. Son, R. 
Shimskey, R. Prabhakaran, Pacific Northwest National Lab; V. Joshi, Pacific 
Northwest National Laboratory 

Low-enriched uranium (LEU) alloyed with 10% Mo (U-10Mo) is being 
considered as a promising alternative to oxide-based dispersion fuel with 
high-enriched uranium for use in research reactors. The configuration of 
this proposed LEU monolithic fuel plate consists of the U-10Mo plate-type 
fuel foil with a 25 μm Zr interlayer barrier clad with an aluminum alloy 
(AA6061). The clad AA6061 is coated with a boehmite layer to prevent 
corrosion. The boehmite layer has a high pH passivation range, which 
makes it resistant to oxidation and preferable to protect the Al cladding. 
Boehmite is usually formed on the AA6061 surface by autoclave processing. 
Various surface cleaning techniques have been employed such as polishing 
and etching to clean the surface of the AA6061 prior to boehmite 
formation. In this study, we examine how pre-treatment of AA6061 using 
polishing followed by both acid and alkaline etching affects the chemical 
composition of the boehmite layer using multimodal analysis. Time-of-
flight secondary ion mass spectrometry (ToF-SIMS), x-ray photoelectron 
microscopy (XPS), transmission electron microscopy (TEM), and grazing 
incidence x-ray diffraction (GI-XRD) were used to understand the changes 
in the boehmite layer as a result pre-treatment. ToF-SIMS provides a 
surface sensitive technique to understand the surface composition and 
characteristics. Spectral similarities were verified using principal comment 
analysis (PCA). XPS is a complimentary technique that provides quantitative 
information about the oxidation states present on the surface. Both the 
SIMS and XPS results suggested oxidation at the surface, which was further 
investigated using TEM-SAED and GI-XRD. While the GI-XRD results 
suggested the dominant phase present on the coupon surface is boehmite, 

TEM-SAED found small amounts of α- and γ-Al2O3 present as a result of 
alkaline etching. 

11:20am AS+BI+CA+HC+LS+PS+SE+SS-WeM-11 Study of Csx(CH3NH3)1-

xPbBr3 Perovskite with XPS Imaging and Small Area Spectra, Tatyana 
Bendikov, Weizmann Institute of Science, Israel; Y. Rakita, Columbia 
University; H. Kaslasi, G. Hodes, D. Cahen, Weizmann Institute of Science, 
Israel 

Interest in halide perovskite (HaPs) is motivated by the combination of 
superior optoelectronic properties and ease in synthesizing these materials 
with a surprisingly low density of electrically active defects.1 HaPs possess 
high chemical sensitivity, especially those having an organic cation at their 
A position (AMX3). Although a direct role of the A cation in this sensitivity is 
unclear, and the structural and optoelectronic backbone lie within the M-X 
bond, the type of the A cation was shown to impact the chemical stability 
and, usually indirectly, affect optoelectronic properties of HaPs.2-3 

X-ray Photoelectron Spectroscopy (XPS), is a surface sensitive technique 
with a sensitivity that goes down to a single atomic layer, and can provide 
unique information that relates the elemental composition with the 
chemical and electronic states of the different elements in the material. 
Our study focuses on the XPS imaging in combination with selected small 
area XPS spectra and uses solution-grown, single crystals of mixed A-cation 
CsxMA1-xPbBr3(MA = CH3NH3

+) HaPs as a candidate for investigating 
heterogeneity within the crystals. With XPS we followed the variations in 
chemical composition of these crystals. By observing the surface, we found 
significant changes in the N/Cs ratio, which increases towards the interior 
of the crystal. Similar variations in N/Cs, but also in Pb/(N+Cs) ratios were 
found when we studied cross-sections of cleaved crystals. This 
compositional heterogeneity within the HaPs crystal was not previously 
reported and was discovered and monitored due to exclusive capabilities of 
the XPS technique. 

References: 

  

1. P. K. Nayak, S. Mahesh, H. J. Snaith, D. Cahen, Nat. Rev. Mater., 
2019, 4, 269-285.  

2. H. Kaslasi, Y. Feldman, Y. Rakita, D. Cahen, G. Hodes,Cryst. 
Growth Des, 2020, 20, 4366-4374.  

3. D. R. Ceratti, A. V. Cohen, R. Tenne, Y. Rakita, L. Snarski, N. P. 
Jasti, L. Cremonesi, R. Cohen, M. Weitman, I. Rosenhek-Goldian, 
I. Kaplan-Ashiri, T. Bendikov, V. Kalchenko, M. Elbaum, M. A. C. 
Potenza, L. Kronik, G. Hodes, D. Cahen, Mater. Horiz., 2021, 
8,1570-1586. 

  

11:40am AS+BI+CA+HC+LS+PS+SE+SS-WeM-12 Surface Characterization of 
Mineral Associated Organic Matters in Environmental Samples by Using 
X-Ray Photoelectron Spectroscopy (XPS), Qian Zhao, M. Engelhard, O. 
Qafoku, K. Hofmockel, Pacific Northwest National Laboratory 

Surface characterization is an important analytical approach to 
understanding the most dynamic interface of a material. The 
understanding of soil organic matter (SOM) persistence is critical to global 
carbon (C) cycling. Minerals play an important role in persisting SOM by 
associating with organic matters (OM) through different interactions. Yet 
mechanisms of the accumulation of OM in soil are still unclear. Chemical 
characterization of OM that is associated with minerals provides a 
mechanistic understanding of mineral-OM interactions. X-ray 
photoelectron spectroscopy (XPS) analysis allows us to probe the chemical 
states and speciation of OM on the surface of mineral grains or soil 
particles. This work used both synthetic mineral-OM complexes and natural 
soil samples to investigate the chemistry of organics that associate with 
minerals. In the synthetic system, we adsorbed four organic compounds on 
a calcite crystal. XPS analysis found the relative concentration of C was 
higher in OM adsorbed calcite than that in pristine calcite. Further, the 
deconvolution of C 1s spectra reveals that the calcite surface had a 
relatively lower abundance of carbonate but a higher abundance of alkanes 
in the OM adsorbed calcite than pristine calcite, indicating the adsorption 
of OM on the calcite surface. In the soil system, we incubated agricultural 
soils with 13C-glucose for 12 months to trace the fate of microbial residues. 
Size and density fractionation was used to separate mineral-associated 
organic matter (MAOM) from whole soil. XPS analysis determined C 
chemistry of necromass on soil particle surfaces by scanning C 1s region of 
MAOM and non-MAOM fractions. We found that the MAOM fraction had a 
relatively higher abundance of carbonyl and carboxylic C functional groups 
and a relatively lower abundance of C-C/C=C group than non-MAOM 
fraction. It suggests that MAOM fraction is enriched in microbial-derived 
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molecules (i.e., proteins) but has fewer plant detritus (i.e., carbohydrates 
or lignin) on mineral surfaces. XPS technique allows us to understand the 
surface chemistry of microbial necromass that is associated with minerals 
in soil. The chemical speciation information provides us with the potential 
bonding environment at the interface of minerals and OM. 
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