Crystal Anisotropy in Surface Energy Engineering (SEE) of LiTaO₃(110) Piezo-Electric for Low Temperature (< 453 K) Nano-BondingTM to Si and α-Quartz SiO₂

S. Prakash, M. Sahal, A.Elison, <u>Shrevash Prakash</u>, B. R. Baker, S. Narayan, L. M. Puglisi, R.J. Culbertson, N. Herbots ARIZONA STATE UNIVERSITY, *Department of Physics*, SIO₂ INNOVATES, LLC, ACCUANGLE ANALYTICS, LLC, Tempe, AZ

<u>GOAL</u>: This project's goal is to bond *anisotropic* LiTaO₃ to Si via Nano-Bonding^{TM, 1-2}, which aims to minimizes thermal stress during bonding and maximizes density molecular cross-bonds via Surface Energy Engineering (SEE). SEE planarizes surfaces at three length scales to achieve direct "nano– contact", at the nano-, micro-, and macro-scale. SEE uses Three Liquid Contact Angle Analysis (3LCAA) and the van Oss-Chaudhury-Good theory to measure hydro-affinity (HA) and surface energies (γ^{T}). These indicate the degree of interaction between surfaces. 3LCAA can map γ^{T} along different crystal orientations, thus detecting the effect of LiTaO₃'s anisotropy on SEE and Nano-BondingTM.

EXPERIMENTAL RESULTS OF NANO-BONDINGTM LITAO₃ to SI:

Hydrophobic LiTaO₃ nano-bonds at RT in air to hydrophilic SiO₂². During nano-contacting, the nanobonded area increases over time, but the bonding is non-uniform² as shown in **Fig.1**. **Time (s)** *Initial Nano-Contact* 0 157 221 267

Fig. 1 Optical obsvervation of nano-bonded area between $LiTaO_3$ and α -Quartz SiO₂ changing over time.

<u>**QUANTIFYING THE ROLE OF ANISOTROPY**</u>: To understand how LiTaO₃'s anisotropy plays a role in Nano-BondingTM of LiTaO₃ to Si, elliptical distortion of the 3LCAA drops is measured in addition to water contact angle (θ_{H2O}) and Surface Energy (γ^{T}) as a function of crystal orientation, as shown in **Fig.2**.

Fig.2 (a) and (b) θ_{H2O} mapping across 15 crystal planes intersecting LiTaO₃ before SEE.

Fig. 2 (a) shows θ_{H2O} mapping across 15 crystal planes intersecting LiTaO₃ before SEE. This shows that θ_{H2O} varies significantly, by 40%, with crystal direction when mapped across a 150 mm (6") LiTaO₃ (100)

wafer diameter. It averages $45 \pm 5.4^{\circ}$ along <0001> direction intersecting the (110) surface plane, with a range, R, of $17 \pm 1^{\circ}$. This is a significant variation as R is > $3\sigma = 3 \times 5.4^{\circ} = 16.2^{\circ}$. The Miller indices of the crystal planes in (a) intersecting the location where each of the eighteen θ_{H20} are measured, are listed and (b) depicts how measured θ_{H20} correlates to crystal direction. θ_{H20} is measured four times for the (-4,4,-1) plane, averaging $48.1 \pm 1.8^{\circ}$, and the (-2,2,1) plane, averaging $41.3 \pm 1.6^{\circ}$. This shows that with 4 data points, the experimental error is 1.7° for these two planes, 10 x less than the measured range R.

Fig. 3 Comparison of water contact angle θ_{H2O} mapped across (a) LiTaO₃ (b) Si, and (c) α -Quartz SiO₂ wafers highlighting the uniformity of θ_{H2O} on Si and α -Quartz SiO₂ versus the non-uniformity LiTaO₃.

Fig.3 compares θ_{H2O} 's mapped across (**a**) 6" LiTaO₃ (110) along <0001> (**b**) 6" Si (100), and (**c**) α -Quartz SiO₂ (100). Si and SiO₂ exhibit much more uniform θ_{H2O} mapping than LiTaO₃ by at least a full order of magnitude. LiTaO₃'s intersecting crystal planes each represents a uniquely different chemical arrangement of atoms and stochiometric composition of elements, affecting the surface dipole and γ^{T} at each location on LiTaO₃ (110). In comparison, cubic Si (100) and almost cubic piezoelectric α -Quartz SiO₂ (which has also a trigonal like LiTaO₃, but with much closer a,b,c, lattice constants) don't have very different chemical structures based off of location on wafer, thus resulting in much more θ_{H2O} uniformity.

Fig. 4 Mapping of total surface energy (γ^T) and its components $(\gamma^{LW}, \gamma^+, \gamma^-)$, at each water drop position on the LiTaO₃ wafer. γ^T varies by $\pm 6\%$, which is significantly less than the 40% variation of θ_{H2O} .

Fig. 4 shows that the variations in the electron acceptor γ^{T} and electron donor γ^{+} cancel each other out, thus resulting in a rather uniform γ^{T} .