Supplementary information:

Determining Surface Recombination Probabilities during Plasma-enhanced ALD using Lateral High Aspect Ratio Structures

Karsten Arts¹, Mikko Utriainen², Riikka L. Puurunen^{2,3}, Erwin Kessels¹ and Harm Knoops^{1,4}

¹Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ²VTT Technical Research Centre of Finland, Tietotie 3, 02044 Espoo, Finland ³Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 AALTO, Finland ⁴Oxford Instruments Plasma Technology, North End, Bristol, BS49 4AP, United Kingdom

Figure S1: Panel (**A**) shows a schematic side view of a Lateral High Aspect Ratio (LHAR) structure (PillarHall[®] LHAR4) developed at VTT. Film growth on such an extremely high aspect ratio (AR) structure is typically limited up to a certain penetration depth. In the case of plasma-enhanced atomic layer deposition (ALD), the achieved penetration depth can provide the recombination probability *r* of the reactive plasma radicals on the growth surface. This is demonstrated in panel (**B**) and (**C**) for the recombination of O atoms on oxides. High penetration depths are observed for SiO₂ and TiO₂, with $r \sim 6 \cdot 10^{-5}$ fitted for both processes using the determined relation between the penetration depth and plasma exposure time. In contrast, plasma ALD of Al₂O₃ and HfO₂ reached AR~90 and AR~40, with *r* estimated at (1-10) $\cdot 10^{-3}$ and (0.1-10) $\cdot 10^{-2}$, respectively. These results show how our method can provide valuable insight into surface recombination of plasma radicals.