Phonon confinement and excitonic absorption in the optical properties of ZnO films

Nuwanjula Samarasingha,¹ Stefan Zollner,¹ Dipayan Pal,² Aakash Mathur,² Ajaib Singh,² Rinki Singh,³ Sudeshna Chattopadhyay^{2,3,4}

¹Department of Physics, New Mexico State University, Las Cruces, NM

²Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552, India ³Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India ⁴Discipline of Physics, Indian Institute of Technology Indore, Indore 453552, India

Fig: Real (ϵ_1) and imaginary part (ϵ_2) of the dielectric function vs film thickness of ZnO films on (a) Si (b) SiO₂ substrates vs photon energy (1 – 6 eV) at 300K. (c) ϵ_1 and ϵ_2 vs film thickness of ZnO films on Si substrates vs photon energy (0.03 – 0.20 eV).