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8:00am PS+EM+SE-TuM-1 Development and Understanding of Isotropic 
Etching Process of Si Selectively to Si0.7Ge0.3, Sana Rachidi, A Campo, V 
Loup, CEA-LETI, France; N Posseme, CEA, LETI,  France, France; J Hartmann, 
S Barnola, CEA-LETI, France 

The vertically stacked wires MOSFET architecture pushes further the scaling 
limits of the CMOS technology. Now deemed as a possible extension to 
FinFET, it offers multiple benefits. A low IOFF current is indeed expected, 
thanks to multi-gate electrostatic control, with a high current drivability 
due to 3D vertically stacked channels. 

The fabrication starts with the epitaxial growth of (Si0.7Ge0.3/Si) multilayers 
(8-12 nm for Si and SiGe layers) on blanket SOI substrates. Then, individual 
and dense arrays of fins were patterned to fabricate stacked-NWs FETs 
with 40 nm-pitch fins which are 36 nm high and roughly 20 nm wide. After 
that, dummy gates and spacers are defined prior to the anisotropic etching 
of the (Si/SiGe) multilayers. Today one of the most critical step in such 
device realization is the isotropic silicon removal selectively to silicon 
germanium. 

In this study an understanding of selectivity evolution between Si and SiGe 
as a function of CF4/O2/N2 remote plasma parameters is presented. The 
experiments performed on 300mm blanket wafers (Si and Si0.7Ge0.3) have 
been carried out on CDE-Allegro. 

The impact of etching parameters (CF4, O2, N2, microwave-power, pressure 
and temperature of the electrostatic chuck) and different pre-treatments 
on etching rates and selectivity is first investigated. X-ray photoelectron 
spectroscopy (XPS) analyses will show that for Silicon, a SiOxFy thick reactive 
layer is formed on the etched surface and controls its etching regime. As 
for Si0.7Ge0.3, a passivation layer of 2 nm is observed. And it contains a 
mixture of GeOx and SiOxFy species. 

Based on these results, application to patterned wafers will be shown. 
Scanning Electron Microscopy (SEM), Transmission electron microscopy 
(TEM) and Energy Dispersive X-ray Spectroscopy (EDX or EDS) are here 
used for the pattern characterisation. 

 *   Corresponding author e-mail:  sana.rachidi @cea.fr 
[mailto:sana.rachidi@cea.fr] 

8:20am PS+EM+SE-TuM-2 III-V/Ge Heterostructure Etching for Through 
Cell Via Contact Multijunction Solar Cell, Mathieu de Lafontaine, G Gay, C 
Petit-Etienne, E Pargon, LTM, Univ. Grenoble Alpes, CEA-LETI, France; M 
Darnon, A Jaouad, M Volatier, S Fafard, V Aimez, 3IT, Univ. de Sherbrooke, 
Canada 

Through cell via contact architecture aims to increase the multijunction 
solar cell efficiency by 3% and the power yield per wafer by 20% by 
transferring the front side contact to the backside using insulated and 
metallized vias. Via hole plasma etching through the III-V/Ge 
heterostructure is a key step to fabricate this new architecture. It is 
challenging, as dozens of layers must be anisotropically etched with low 
roughness and free damage to ensure optimal cell performance. Moreover, 
etched patterns must have a depth of >30 µm and present >3 aspect ratio. 
In this abstract, several patterning strategies are presented to address 
these challenges. 

The epiwafers consist of a 8µm-thick III-V heterostructure (InGaP, InGaAs, 
GaAs, AlInP, AlGaAs, AlGaInP layers and quantum dots) epitaxially grown 
on Ge substrate. A 5µm thick SiO2 hard mask (HM) is first deposited by 
PECVD and patterned by contact photolithography and plasma etching. The 
optimization of both the lithography and HM opening steps is crucial for an 
optimal transfer into the III-V/Ge layers. It is observed that sloped and 
rough hard mask sidewalls after the HM opening step are detrimental to 
the via hole etching and lead to severe damage on the heterostructure 
sidewalls. Combining a thick photoresist mask with vertical sidewalls and 
an optimized Ar/C4F8/O2 plasma process developed in a capacitive coupled 
plasma reactor allows to pattern the 5µm-thick HM with vertical and quite 
smooth sidewalls. 

A room temperature SiCl4/Cl2/H2 plasma process was developed in an 
inductively coupled plasma reactor to etch vias in the III-V/Ge 
heterostructures. The cell performance loss associated to via etching was 

almost absent, indicating that such chemistry is suitable for photovoltaic 
applications. However, some layers present isotropic etching, which is 
problematic for the via insulation and metallization. Indeed, III-V 
compounds with low indium concentration are more sensitive to lateral 
etching, thus creating preferential isotropic etching in several III-V layers. 
This represents a challenge considering the aspect ratio and the depth 
targets. Indeed, lateral etching will be even greater for a longer process 
time. To obtain anisotropic etching, a high temperature (200°C) SiCl4/Cl2/H2 
process is proposed. The enhanced volatility of the indium by-products 
combined with the Si-based passivation could improve the anisotropy while 
maintaining optimal cell performance. FIB-TEM and EDX are performed to 
characterize both the etch morphology and the passivation layer. 
Moreover, optoelectrical measurements will assess the cell performance 
after via etching. 

8:40am PS+EM+SE-TuM-3 Feature Scale Modeling of Etching of High 
Aspect Ratio Silicon Structures in Pulsed Plasmas, Wei Tian, J Wang, S 
Sadighi, J Kenny, S Rauf, Applied Materials 

As critical dimensions shrink below 7 nm, etching of high aspect ratio (HAR) 
Si structures, such as those used for shallow trench isolation (STI), is 
becoming challenging. Some strategies to deal with these challenges 
include multi-step cyclic processes and pulsed plasmas. In this paper, we 
consider a cyclic pulsed plasma process for Si etch. Etching is done by 
cycling three steps: oxidation (OX), Si main etch (ME) and clean. The OX 
step passivates the Si sidewalls and protects them during Si ME. Si is mainly 
etched during the ME step, where the ion energy and angular distribution 
(IEAD) and ion / neutral flux ratio are controlled through power pulsing. 
The clean step removes the Cl/Br-containing passivation from the Si surface 
prior to re-oxidation. Pulsed plasmas have demonstrated several 
advantages compared to continuous wave (CW) plasmas and have become 
indispensable in etching of the next generation of microelectronic devices 
[1-2]. When source power and/or bias power are pulsed, a variety of 
pulsing modes are possible. Pulsing duty cycles and phase shift provide 
additional knobs for controlling the etching characteristics. In order to 
understand the effects of pulsing modes on etching properties, a feature 
scale model coupled to a plasma model is desired. 

In this work, we investigate several pulsing modes during the Si ME step 
including separate pulsing of the plasma source or bias powers, and their 
synchronized pulsing. Plasma models for the 3 steps including the pulsed 
plasma step [3] are coupled to a 3D Monte Carlo feature scale model. 
Process performance has been quantitatively evaluated by examining etch 
rates for Si and the SiO2-like mask, Si/mask etch selectivity, and critical 
dimensions within the HAR features. When only the radio-frequency (RF) 
bias power is pulsed, Si and mask etch rates scale with pulse duty cycle. As 
a result, if Si is etched to the same depth, the HAR trenches are wider at 
higher duty cycles due to less total oxidation time and less protection of 
the sidewalls. Source power pulsing provides higher Si etch rate because of 
RF bias power being on continuously, but suffers from poor mask 
selectivity. Synchronized pulsing of both the source and RF bias powers in 
conjunction with phase control provides additional flexibility in modulating 
the IEAD and the ion/neutral flux ratio. RF bias pulsing and in-phase 
synchronized pulsing yield the best selectivity for the conditions explored. 

[1] S. Banna, et al., J. Vacuum Sci. Technol. A 30, 040801(2012). 

[2] K. Tokashiki et al., Jpn. J. Appl. Phys. 48, 08HD01(2009). 

[3] A. Agarwal, S. Rauf and K. Collins, Plasma Sources Sci. Technol. 21, 
055012 (2012). 

9:00am PS+EM+SE-TuM-4 Plasma Etching of High Aspect Ratio Oxide-
Nitride-Oxide Stacks, S Huang, C Hurard, University of Michigan; S Nam, S 
Shim, W Ko, Samsung Electronics Co., Ltd., Republic of Korea; Mark 
Kushner, University of Michigan 

Increasing demand for large memory capacity is now being met by 3-
dimensional vertical structures. Fabricating these structures requires 
plasma etching through hundreds of stacked layers resulting in extremely 
high aspect ratio (up to 100) vias. The stack typically consists of alternately 
deposited silicon nitride and silicon oxide layers which serve as the 
sacrificial material and gate dielectric respectively. When combining the 
high aspect ratio (HAR) and hybrid materials, the etching of oxide-nitride-
oxide (ONO) stacks faces both traditional (e.g., aspect ratio dependent 
etching, bowing and charging) and new challenges (e.g., mixing layers, line 
edge striation and tapered etch front through several layers). 

In this paper, we report on results from a computational investigation of 
the etching of ONO stacks using tri-frequency capacitively coupled plasmas 
sustained in fluorocarbon gases. The reactor scale modeling was performed 
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using the Hybrid Plasma Equipment Model (HPEM), from which the neutral 
and ion fluxes and ion energy and angular distributions (IEADs) to the wafer 
surface were obtained. The feature scale modeling was performed using 
the 3-dimensional Monte Carlo Feature Profile Model (MCFPM) with a 
newly developed polymer mediated fluorocarbon etching mechanism for 
oxide and nitride. 

During the etching of ONO stacks, the etch front quickly evolves to a 
tapered profile at low aspect ratio (~5) and persists into deeper features, 
mainly due to re-deposition of sputtered fluorocarbon radicals within the 
feature. The etch rate generally decreases with increasing aspect ratio due 
to limited transport of radicals and ions. Conductance, ion reflection from 
sidewalls and charging all play of role in the flux of reactive species to the 
etch front. When the etching proceeds through the ONO stack, the etch 
rate fluctuates, becoming higher for the nitride and lower for the oxide. 
The formation of scalloping due to different lateral etch rates for each 
material is observed for some conditions while not for others. The 
mechanism behind this scalloping, and methods to minimize its effect will 
be discussed. 

* Work supported by Samsung Electronics Co. Ltd, National Science 
Foundation and the Department of Energy Office of Fusion Energy 
Sciences. 

9:20am PS+EM+SE-TuM-5 Etch Profile Evolution in Poly-silicon using 
Halogen Containing Plasmas for Next Generation Device Fabrication, 
Shyam Sridhar, S Voronin, P Biolsi, A Ranjan, TEL Technology Center, 
America, LLC 

The shrinking and introduction of complex three-dimensional device 
structures poses a great challenge for plasma etching. With ever-
decreasing feature pitches, it is extremely important to achieve a near ideal 
etch profile, i.e. vertical sidewalls and flat etch fronts. The challenges are 
manifold in etching three-dimensional structures. For example, in etching 
high aspect ratio square shaped holes, it is difficult to remove the targeted 
material from the corners, especially at the bottom of the feature. 

In this work, we report the impact of process parameters such as ion 
energy, neutral and ion fluxes on the profile evolution of closely spaced 
poly Si lines using F, Cl, and Br containing plasmas. Etching in Cl and Br 
plasmas resulted in anisotropic profiles with bowed and tapered sidewalls. 
Addition of gases such as oxygen or fluorocarbons to minimize bowing 
resulted in enhanced tapering of sidewalls. The etch fronts were found to 
be relatively flat or curved depending on the ion energy. Micro trenching 
was also found to influence the shape of the etch front. We attempt to 
extend the learning from etching two-dimensional lines to three-
dimensional features, in order to define a better processing space for new 
and emerging applications. 

9:40am PS+EM+SE-TuM-6 Flux and Energy of Reactive Species Arriving at 
the Etch Front in High Aspect Ratio Features During Plasma Etching of 
SiO2 in Ar/CF4/CHF3 Mixtures, Soheila Mohades, University of Michigan; M 
Wang, A Mosden, TEL Technology Center America, LLC; M Kushner, 
University of Michigan 

Multi-frequency, capacitively coupled plasmas (CCPs) provide additional 
control in semiconductor processing by separating production of ion fluxes 
from acceleration of ions into the wafer. In dual-frequency capacitively 
coupled plasmas (DF-CCPs), the higher frequency (HF, tens to hundreds of 
MHz) sustains the plasma and the lower frequency (LF, a few to 10 MHz) 
controls acceleration of ions into the wafer. Although the goal is to have 
completely separate control, changing the frequency and power of the LF 
does affect the magnitude of reactive fluxes to the wafer in addition to the 
ion energy and angular distributions (IEADs). As the aspect ratio (AR) of 
features approaches 100 in high aspect ratio (HAR) etching of dielectrics, 
the parameter of interest is the flux of reactants that reaches the etch 
front, which is not necessarily the same as the fluxes that enter the feature. 
Issues such as side-wall scattering and neutral conductance in the feature 
modify those fluxes as the AR increases. 

In this paper, the IEADs and reactive fluxes reaching the etch front during 
fluorocarbon plasma etching of SiO2 were computationally investigated as a 
function of AR. The feature scale modeling was performed using a 3-
dimensional implementation of the Monte Carlo Feature Profile Model 
(MCFPM). The IEADs and reactive fluxes incident onto the feature were 
obtained using the 2-dimensional Hybrid Plasma Equipment Model 
(HPEM). The parameter space for the DF-CCP has LF of a few to 10 MHz, HF 
of 40 MHz, with powers of 100-1000 W applied to the bottom electrode 
with and without a dc-augmented top electrode in a gas mixture of 
Ar/CF4/CHF3 at 10s of mTorr. The reactive fluxes and energies onto the etch 

front for AR of up to 100 are discussed for ions, hot-neutrals and thermal 
neutrals. 

* Work supported by TEL Technology Center, America, LLC, National 
Science Foundation and the Department of Energy Office of Fusion Energy 
Sciences. 

11:00am PS+EM+SE-TuM-10 Wafer-scale Fabrication of Suspended 
Graphene Nanoribbon Arrays -from Growth Dynamics to Optoelectrical 
Applications-, Toshiaki Kato, T Kaneko, Tohoku University, Japan INVITED 

Graphene nanoribbons (GNRs) combine the unique electronic and spin 
properties of graphene with a transport gap that arises from quantum 
confinement and edge effects. This makes them an attractive candidate 
material for the channels of next-generation transistors. However, the 
reliable site and alignment control of nanoribbons with high on/off current 
ratios remains a challenge. We have developed a new, simple, scalable 
method based on novel plasma catalytic reaction [1-5] for directly 
fabricating narrow GNRs devices with a clear transport gap [6]. Since the 
establishment of our novel GNR fabrication method, direct conversion of a 
Ni nanobar to a suspended GNR is now possible. Indeed, GNRs can be 
grown at any desired position on an insulating substrate without any post-
growth treatment, and the wafer-scale synthesis of suspended GNR arrays 
with a very high yield (over 98%) is realized [7]. The growth dynamics of 
suspended GNR is also investigated through the systematic experimental 
study combined with molecular dynamics simulation and theoretical 
calculations for phase diagram analysis. The improvement of thermal 
stability of Ni nanobar can be a key to realize the GNR nucleation in our 
method, which can be given by supplying higher density of carbon from 
plasma to liquid-phase Ni nanobar. The wettability of liquid-phase Ni 
nanobar against to the SiO2 substrate is also found to be an important 
factor forming the suspended structure of GNR. It is also revealed that the 
minimum length of GNR can be decided by the wavelength of Plateau-
Rayleigh instability known as a traditional instability of fluid flow. We 
believe that our results can contribute to pushing the study of atomically 
thin layered materials from basic science into a new stage related to the 
optoelectrical applications [8-10] in industrial scale. 

References 

[1] T. Kato and R. Hatakeyama, J. Am. Chem. Soc. 130 (2008) 8101. 

[2] T. Kato and R. Hatakeyama, ACS Nano 4 (2010) 7395. 

[3] T. Kato and R. Hatakeyama, ACS Nano 6 (2012) 8508. 

[4] T. Kato and R. Hatakeyama, ACS Nano 4 (2010) 7395. 

[5] B. Xu, T. Kaneko, Y. Shibuta, T. Kato, Scientific Reports 7 (2017) 11149. 

[6] T. Kato and R. Hatakeyama, Nature Nanotechnology 7 (2012) 651. 

[7] H. Suzuki, T. Kaneko, Y. Shibuta, M. Ohno, Y. Maekawa, and T. Kato, 
Nature Communications 7 (2016) 11797. 

[8] T. Kato and T. Kaneko, ACS Nano 8 (2014) 12777. 

[9] T. Akama, W. Okita, R. Nagai, C. Li, T. Kaneko, T. Kato, Scientific Reports 
7 (2017) 11967. 

[10] T. Kato and T. Kaneko, ACS Nano 10 (2016) 9687. 

11:40am PS+EM+SE-TuM-12 Investigation of Surface Reactions for 
GeSbTe-based Phase Change Material: From Etching to Final Sealing 
Process, Yann Canvel, S Lagrasta, STMicroelectronics, France; C 
Boixaderas, S Barnola, CEA-LETI, France; E Martinez, CEA/LETI-University 
Grenoble Alpes, France 

Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te (GST) 
alloys, have shown outstanding properties, which have led to their 
successful use for a long time in optical memories (DVDs) and, recently, in 
non-volatile resistive memories. The latter, known as PCM memories, are 
among the most promising candidates to be integrated into next 
generation smart-power and automotive applications [1]. 

Chalcogenide PCMs exhibit fast and reversible phase transformations 
between crystalline and amorphous structures with very different 
resistivity states. This distinctive ability to store the information gives a 
unique set of features for PCMs, such as fast programming, flexible 
scalability, high data retention and performing endurance [2][3]. 

In the perspective of large-scale integration, which means incorporation of 
the PCM into more and more confined structures, the device performances 
are getting increasingly more sensitive to surface effects of the GST layer. 
Thus, it is crucial to maintain a homogeneous stoichiometric composition in 
the GST surface/volume all along the manufacturing process, particularly 
during the patterning of PCM cells. 
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In this study, we examine the main surface reactions that GST material 
must face and we illustrate how these reactions are likely to modify its 
composition. 

In particular, we will focus on the surface damages generated by different 
halogen-based plasma etching processes [4][5]. An innovative etching 
method, compatible with extreme confined structures, will be highlighted. 

Then, we will study the oxidation of GST, responsible of the critical surface 
degradation after the etching process [6]. According to the exposure 
conditions, the GST surface undergoes some specific chemical 
modifications that will be pointed out. 

Finally, the stability of GST composition will be evaluated at each point of a 
standard GST patterning process: from etching to final sealing of PCM cells. 
It will allow us to understand how the chalcogenide material is degraded 
during the whole process. Some improvements will be exhibited in order to 
reduce this degradation. 

Plasma etching were carried out in a 12 inch planar ICP reactor. And all the 
surface analyses were performed by using different techniques of material 
characterization, such as XPS, PP-TOFMS and EDS. 

References 

1. Pasotti, M. et al. IEEE European Solid State Circuits (2017). 

2. Sousa, V. et al. VLSI Technology Digest (2015). 

3. Noé P. et al. Semicond. Sci.Technol. 33, 013-002 (2018). 

4. Kang, S. et al. Jpn. J. Appl. Phys. 50, 086-501 (2011). 

5. Li, J. et al. Appl. Surf. Sci. 378, 163-166 (2016). 

6. Golovchak, R. et al. Appl. Surf. Sci. 332, 533-541 (2015). 

12:00pm PS+EM+SE-TuM-13 Behaviors of Charged Species in Afterglow of 
Dual Frequency Pulsed Capacitively Coupled Plasma with a Synchronous 
Negative DC-bias, Takayoshi Tsutsumi, T Ueyama, K Ishikawa, H Kondo, M 
Sekine, Nagoya University, Japan; Y Ohya, Tokyo Electron Miyagi Limited; M 
Hori, Nagoya University, Japan 

Dual frequency pulsed capacitively coupled plasma with a synchronous 
negative DC-bias to a top electrode is developed for the improvement of 
high-aspect-ratio contact hole (HARC) fabrications. It enables to suppress 
the distorted etched profiles such as twisting. These distortions are due to 
the distortions of ion trajectories inside the deep contact holes, which are 
charged up positively. It is expected that charged species presented in early 
afterglow were neutralized on the surfaces in the holes. we focus on the 
behavior of charged species in the afterglow period of the synchronous 
negative DC-bias imposition to the top electrode in the pulsed dual 
frequency CCP. 

For temporal change of electron density in the afterglow, the synchronous 
negative DC-bias resulted in lower decay rate of electron density in 
afterglow1. The result indicate that higher DC-bias imposition causes more 
electron generation. Moreover, the decay rate near the bottom electrode 
is lower than that of near the top electrode. The possible explanation is 
electron generation or sustaining mechanism in the afterglow of DC 
synchronized pulsed plasma. We measured OES to confirm the electron 
generation or plasma sustainment in the afterglow. The intensities of Ar 
emission (at a wavelength of 750.38 nm) in afterglow decreased at the 
beginning of RF off period and increased after several μs. This phenomenon 
was not observed in the constant DC-bias condition. 

  The synchronous DC-bias voltage seems to accelerate the positive ions 
to the top electrode. And ion bombardment to the top electrode surface 
enhance the generation of the secondary electron in the afterglow. We 
consider that this influence the generation of negative ions and the 
neutralization of the charged surface of the hole in afterglow.  

1T. Ueyema, Y. Fukuanga, T. Tsutsumi, K. Takeda, H. Kondo, K. Ishikawa, M. 
Sekine, M. Iwata, Y. Ohya, H. Sugai, and Hori, Jpn. J. Appl. Phys. 56, 06HC03 
(2017). 
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