
Wednesday Morning, October 24, 2018 

Wednesday Morning, October 24, 2018 1 8:00 AM 

Actinides and Rare Earths Focus Topic 
Room 202C - Session AC+MI+SA-WeM 

Magnetism, Complexity, and Superconductivity in the 
Actinides and Rare Earths 
Moderators: Melissa Denecke, University of Manchester, UK, David 
Geeson, AWE, James Tobin, UW Oshkosh 

8:00am AC+MI+SA-WeM-1 Strong electron-electron Interactions in the 
Actinides: Using Organometallics to Probe Delocalization Effects, Corwin 
Booth, Lawrence Berkeley National Laboratory INVITED 

Systems exhibiting strong electron-electron interactions remain at the 
forefront of inquiry into complex properties of condensed matter systems 
due to their exciting properties (eg. superconductivity) and their resistance 
to being understood on a fundamental level. A bottleneck toward a better 

understanding has been the difficulty of the required many-body 
calculations for extended solids. Alternatively, calculations on small 

molecules require fewer and better approximations, potentially offering a 
better description. Although strong electron-electron interactions are well 
established in extended solids, recent work on lanthanide organometallic 

coordination compounds has demonstrated the importance of such 
interactions, fueled by the propensity for certain 4f orbitals to be partially 

delocalized. Meanwhile, recent work on the actinides challenges the 
canonical view that the 5f electrons can bond in the light actinides but are 
essentially localized in the heavier actinides. A major stumbling block for 
such work is the paucity of known structures for elements beyond Am in 

the periodic table. 

For the discussion presented here, work on Ce and Yb organometallics will 
provide context in terms of f-occupancy and in bonding characteristics and 
the effect on magnetism. The role of strongly electron interactions will be 

described in terms of configuration interaction (CI) and related calculations. 
Occupancy is measured using Ln LIII-edge x-ray absorption near-edge 

structure (XANES) techniques, and local structure (EXAFS) measurements 
demonstrate the final effect on the bonding at the metal center. Of 

particular interest is what happens in formally Ce(IV) systems that exhibit 
strong interactions. 

XANES measurements of actinides are more difficult to interpret and will 
be discussed. The focus will be, however, on EXAFS measurements across 
the An series in the presence of strongly oxidizing ligands. Chosen ligands 

include hydroxypyridonone (HOPO), with less oxidizing ligands, such as 
diethylenetriaminepentaacetic acid (DTPA) used for comparison. Cations 
include Th, U, Pu, Am, Cm, Bk, and Cf. Discussions will center on nearest-
neighbor bond lengths, using DFT calculations as a guide. The surprising 

role of covalency in the late actinides will be considered, both in terms of 
the EXAFS results and in terms of the edge shifts. 

This work was supported by the U.S. Department of Energy (DOE), Office of 
Science (OS), Office of Basic Energy Sciences (OBES), under Contract No. 

DE-AC02-05CH1123. 

8:40am AC+MI+SA-WeM-3 Structure and Magnetism of U-based Thin 
Films and Heterostructures, Evgeniya Tereshina-Chitrova, Institute of 
Physics, Academy of Sciences of the Czech Republic, Czech Republic; L 
Havela, Charles University, Prague, Czech Republic; T Gouder, Z Bao, 
Institute for Transuranium Elements, Germany; M Dopita, Charles 
University, Prague, Czech Republic; R Caciuffo, Institute for Transuranium 
Elements, Germany INVITED 

Uranium is the basic component of most nuclear fuels. The production of 
uranium-based films has advantage over bulk materials studies as it allows 
performing advanced physics and chemistry experiments on small amounts 
of radioactive material and on its clean and smooth surfaces. Other 
interesting field is uranium magnetism. Although uranium itself is non-
magnetic, uranium compounds display a rich variety of magnetic 
phenomena intimately related to the variable character of the 5f electron 
states [1]. Additional degrees of freedom can be used in thin films, in which 
the reduced dimensionality and structure modifications far exceed the 
limits imposed by thermodynamics, obeyed in bulk systems. We review the 
achievements in the field of sputter-deposited films, in which variations of 
deposition conditions can dramatically suppress crystallinity of the 
deposited material. The 5f itinerant magnetic systems (as US or UN [2]) 
react to the low substrate temperatures and high deposition rates by 
decreasing ordering temperatures and eventually by the loss of U magnetic 
moments. The strong ferromagnetism of uranium hydride is, on the other 
hand, almost insensitive, which underlines its local-moment character. 

The possibility to combine films of various materials on the nanostructure 
scale can also give rise to new functionalities. For example, the exchange 
bias (EB) effect [3], arising as a result of combination of a ferromagnet 
biased by exchange interaction at the interface to an antiferromagnet, is 
particularly interesting if uranium magnetics are involved. The new 
ingredient, strong spin-orbit interaction, can lead to very strong magnetic 
anisotropy, which represents an essential parameter. We have been 
systematically studying films of Fe3O4 (ferromagnet) grown using different 
substrates on the top UO2, playing the role of biasing antiferromagnet [4]. 
The resulting high bias field (> 0.2 T) and a proximity effect, in which the 
high Curie temperature of Fe3O4 provides the EB functionality even at 
temperatures exceeding ordering of UO2, demonstrate the promising 
aspects of using actinides in this non-traditional way. 

The work is supported by the Czech Science Foundation under the project 
#18-02344S. Part of the work was supported by “Nano-materials Centre for 
Advanced Applications,” Project No.CZ.02.1.01/0.0/0.0/15_003/0000485, 
financed by ERDF. 

[1] V. Sechovsky, L. Havela, in: Magnetic Materials, K.H.J. Buschow (Ed.), 
Elsevier, Amsterdam, 1998, Vol. 11, p. 1. 

[2] L. Havela et al., JALCOM 408-412, p. 1320 (2006). 

[3] W. H. Meiklejohn and C. P. Bean, Phys. Rev. B 102, 1413 (1956). 

[4] E.A. Tereshina et al., Appl. Phys. Lett. 105(12),122405 (2014). 

9:20am AC+MI+SA-WeM-5 Field Induced Lifshitz Transitions in URu2Si2, E 
Calegari, Univ Federale Santa Maria, Brazil; S Magalhaes, Universidade 
Federale Rio Grande do Sul, Brazil; Peter Riseborough, Temple University
 INVITED 

We report calculations on an unusual phase of the Under-screened 
Anderson Lattice (UAL) model, the so called spin-dependent inter-orbital 
density wave that has been proposed as describing the ``Hidden Order" 

(HO) phase of URu2Si2. 

We determine the effects of an applied magnetic field. Since the order 
parameter describes an ordering in the x-y plane, the electronic properties 
of the system are anisotropic below the critical temperature THO. We show 

that the magnetic susceptibility becomes anisotropic below THO. 
Furthermore, for fields applied along a spontaneously chosen hard axis, 
THO decreases towards zero and that the HO transition changes from 

second order to first order at a large value of the magnetic field. Also, we 
find that the system undergoes a cascade of field-induced Lifshitz 
transitions and also show how these properties originate from the 

dependence of the quasi-particle bands on the orientation of the applied 
field. The good qualitative agreement with experimental findings provides 

strong support for the proposed description of the HO phase as a spin-
dependent inter-orbital density wave phase. 

11:00am AC+MI+SA-WeM-10 New Form of Uranium Hydride - UH2, 
Ladislav Havela, M Paukov, M Dopita, L Horak, P Minarik, M Divis, I Turek, 
Charles University, Prague, Czech Republic; D Legut, VSB-Technical 
University of Ostrava, Czech Republic; T Gouder, A Seibert, F Huber, 
European Commission - Joint Research Centre; E Tereshina-Chitrova, 
Institute of Physics, Academy of Sciences of the Czech Republic, Czech 
Republic 

Most of f-elements form with hydrogen both di- and trihydrides. Actinide 
and rare-earth dihydrides occur, as a rule, in the CaF2 structure type. 
Uranium represents an exception, only UH3 is present in the binary phase 
diagram. It exists in two different structure types. The metastable form α-
UH3 forms in the Cr3Si structure type, which is in fact bcc U lattice filled 
with hydrogen. The stable form β-UH3 has a larger cubic cell with two 
different U sites. Both forms are ferromagnets with the total U moment of 
≈ 1 μB/U and the Curie temperature TC ≈ 165 K. We have recently 
synthesized UH3 thin films using a reactive sputter deposition. XRD analysis 
indicated the β-UH3 structure, modified by a pronounced (00l) texture and 
compressive residual strains imposed by the deposition dynamics. 
Magnetization measurements proved TC = 165 K. 

The sputter deposition on a cooled substrate (T = 170 K) using Si wafer the 
crystal structure turned different. The deposited material is undoubtedly 
cubic, of the fcc type, and the lattice parameter a = 5.3598 ± 0.0014 Å is 
very close to that of PuH2 (a = 5.359 Å) and NpH2+x (a = 5.343-5.355 Å). 
Hence we can assume that UH2 in the fluorite structure has been formed. 
The key role in stabilization plays likely the effect of substrate (Si has a = 
5.431 Å) in combination with low temperature deposition. The UH2 film 
was subsequently subjected to magnetization measurements, which 
indicated a ferromagnetic ground state with TC ≈ 125 K. This is lower than 
in the UH3 phases, although the U-U spacing in UH2 should be higher, 3.78 
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Å, than in both UH3 phases (3.31 and 3.60 Å for β- and α-UH3, respectively). 
This fact points to the U-U interaction being more important than the U-U 
spacing. The ferromagnetic state is also the ground state obtained from ab-
initio calculations. Scalar relativistic calculations (LDA) for experimental 
lattice parameter yield the spin moment μS = 2.0 μB/U. LDA+U (U = 2.25 eV) 
gives the equilibrium lattice parameter a = 539.9 Å, i.e. 0.7% larger than 
the experimental one, the ferromagnetic ground state with (111) easy-
magnetization direction and the magnetic anisotropy energy Ea = 9 meV. 
The total moment 0.45 μB/U consists of 2.59 μS and -3.04 μL. 

This work was supported by the Czech Science Foundation under the grant 
No. 18-02344S.  The work at JRC Karlsruhe was supported by the European 
FP7 TALISMAN project, under contract with the European Commission. Part 
of the work was supported by the project “Nanomaterials centre for 
advanced applications”, Project No. CZ.02.1.01/0.0/0.0/15_003/0000485, 
financed by ERDF. 

11:20am AC+MI+SA-WeM-11 Tuning of Electronic Properties of U- and RE- 
Metallic Systems by H Absorption, Silvie Maskova, Charles University, 
Prague, Czech Republic; K Miliyanchuk, Ivan Franko National University of 
Lviv, Lviv, Ukraine; A Kolomiets, Lviv Polytechnic National University, Lviv, 
Ukraine; L Havela, Charles University, Prague, Czech Republic 

The sensitivity of the interactions in the intermetallic systems to 
modification of the crystal structure makes the experimental techniques 
involving alteration of the atomic arrangement especially important. 
Various studies under compression are well-known examples of such 
methods. From this point of view hydrogenation can be treated as a 
complementary technique that provides „negative“ pressure. Hydrides can 
be defined as compounds for which the hydrogen absorption leads to the 
modifications of the crystal structure, such as pure lattice expansion or the 
formation of a new structure. As a result, the new compounds (hydrides) 
exhibit qualitatively new physical properties and such modifications 
provide us with additional information on the peculiarities of interatomic 
interactions in the initial compounds. 

As an example, we will compare the impact of H absorption on U- and RE-
compounds using A2T2X (A = Rare-Earth (RE) or actinide, T = transition 
metal, X = p-metal) compounds crystallizing in the tetragonal Mo2FeB2 
structure type (space group P4/mbm). U2T2X interact with H2 only at high 
pressure (≈ 100 bar) reaching 2 H/f.u. The H absorption produces a lattice 
expansion (lower than 10 %), while the tetragonal structure is preserved. 
Higher H concentrations, which can be achieved in some RE2T2X 
compounds (up to 8 H atoms/f.u), lead to amorphization or structure 
symmetry changes (with volume expansion exceeding 20 %), imposed by a 
minimum H-H distance requirement. 

Magnetic properties of U-compounds strongly depend on the U-U 
distances. Hydrogen intrusion modifies the lattice by expanding it without 
changing the crystal-structure type leading to a 5f band narrowing. As a 
consequence, doping of U intermetallics by interstitial hydrogen leads to 
stronger magnetic properties. On the other hand, the hydrogen absorption 
has opposite effect on magnetic properties of RE2T2X compounds. For RE 
compounds, hydrogenation affects mainly the inter-site exchange 
interaction, which is weakened presumably by reducing the concentration 
of conduction electrons, responsible for the RKKY interaction. 

11:40am AC+MI+SA-WeM-12 Magnetic Structures of UnRhIn3n+2 Materials, 
Attila Bartha, M Klicpera, Charles University, Prague, Czech Republic; P 
Cermak, Forschungszentrum Juelich GmbH, Germany; B Ouladdiaf, Institute 
Laue-Langevin, France; J Custers, Charles University, Prague, Czech Republic 

In the past decade, U-compounds crystallizing in the HoCoGa5-type 
structure (P4/mmm), frequently referred to as 115, have been in the focus 
of attention in experimental and theoretical research. Vigorous activities 
have been motivated by the high superconducting transition temperature 
of Tc = 8.7K in PuRhGa5 [1] and Tc = 18.5K in PuCoGa5 [2]. No further 
superconductivity has been reported in neither U-115 nor in the closely 
related U2TGa8 compounds (T = transition metal). However, interesting 
magnetic properties have been observed: neutron scattering experiments 
revealed that UNiGa5 exhibits the G-type antiferromagnetic (AFM) phase, 
while UPdGa5 and UPtGa5 exhibit the A-type AFM state. Note that G-type 
indicates a 3D Néel state, while A-type refers to a layered AF structure 
where spins align FM in the ab plane and AFM along the c axis [3]. The 
difference in the two magnetic structures is significant since it implies a 
sign change of the nearest-neighbor (NN) interaction. 

Here we report on the magnetic structures of URhIn5 and U2RhIn8, two new 
members of the UnTmX3n+2m (X=In,Ga) family of compounds [4]. URhIn5 
displays AFM order below TN = 98K. The observed increase of the resistivity 
for current parallel [100], [110] and [001] are reminiscent to a spin-density 

wave (SDW) type of transition with the gap opening first along the [001] 
direction [5]. U2RhIn8 enters the AFM state at TN = 117K. No increase in 
resistivity in the vicinity of TN is found which would hint to a SDW gap 
opening. Neutron diffraction experiments on URhIn5 were performed at 
the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching using the triple axis 
spectrometer PANDA. Single crystals with accumulated mass of 10mg 
where glued on an Al-plate. Our results confirmed the magnetic 
propagation vector k=(1/2,1/2,1/2) predicted by NMR experiments [6] and 
a magnetic moment of 1.65 µB/U3+. The neutron study on U2RhIn8 has been 
conducted at ILL, Grenoble using D10 on only one single crystal with m ≈ 
1mg. Analysis revealed a propagation vector k=(1/2,1/2,0) and an ordered 
moment of 1.7 µB/U3+. UIn3, URhIn5 and U2RhIn8 all show G-type AFM 
phase. While the c-axis parameter differs significantly the a lattice 
parameter equals 4.601Å, 4.621Å and 4.6056Å respectively, being a change 
of less than 1% pointing to the fact that the NN coupling is important for 
the type of magnetic structure. 

[1] F. Wastin et al., J.Phys.Condens.Matter 15, S2279 (2003) 

[2] J.L. Sarrao et al., Nature (London) 420, 297 (2002) 

[3] T. Hotta, Phys.Rev. B 70, 054405 (2004) 

[4] A. Bartha et al., J.Magn.Magn.Mater. 381, 310 (2015) 

[5] A. Bartha et al., Acta Phys.Pol. A 127, 339 (2015) 

[6] H. Sakai et al. Phys.Rev. B 88, 045123 (2013) 

12:00pm AC+MI+SA-WeM-13 Insights into the Magnetic Dead Layer in 
La0.7Sr0.3MnO3 Thin Films from Temperature, Magnetic Field and Thickness 
Dependence of their Magnetization, Navid Mottaghi, M Seehra, R 
Trappen, S Kumari, C Huang, S Yousefi, G Cabrera, A Romero, M Holcomb, 
West Virginia University 

Detailed dc magnetization (M) measurements of a 7.6 nm La0.7Sr0.3MnO3 
thin film samples is investigated. The sample was fabricated by pulsed laser 
deposition. Zero-field-cooled (ZFC) M vs. applied field (H) cooled down to T 

= 5 K reveal the presence of negative remanent magnetization (NRM) as 
well as in ZFC M vs. temperature (T) measurements in H = 50 Oe and 100 

Oe. ZFC and FC (field-cooled) protocols are used to determine the blocking 
temperature TB in different H. Isothermal hysteresis loops at different T are 

used to determine the temperature dependence of saturation 
magnetization (MS), remanence (MR) and coercivity HC. The MS vs. T data 
are fit to the Bloch law, MS (T) = M0 (1 – BT3/2), showing a good fit for T < 
100 K and yielding the nearest-neighbor exchange constant J/kB ≅ 18 K. 

The variations of TB vs. H and HC vs. T are well described by the model often 
used for randomly oriented magnetic nanoparticles with magnetic domain 
diameter ≈ 9 nm present in the dead-layer of thickness d =1.4 nm. Finally, 
the data available from literature on the thickness (D) variation of Curie 
temperature (TC) and MS of LSMO films grown under 200, 150, and 0.38 

mTorr pressures of O2 are analyzed in terms of the finite-size scaling, with 
MS vs. D data fit to MS (D) = MS(b)(1-d/D) yielding the dead layer thickness d 

= 1.1 nm, 1.4nm and 2.4 nm respectively. 
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