Photocatalytic effect of Ag-TiO₂ nanotubes fabricated by BCP lithography Da In Sung¹, Ji Soo Oh¹, Kyung Chae Yang¹, Dong Woo Kim¹, and and Geun Young Yeom¹

¹School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea

Titanium dioxide (TiO₂) is one of the multipurpose materials used for various functional applications such as solar photocatalysts for degradation of environmental contaminants due to its unique properties. Especially, environmental decontamination by photocatalysis using TiO₂ nanotubes can be more appealing than conventional chemical oxidation methods because of its low costs, nontoxicity, high surface-to-volume ratios, high surface activity, and simple recycling. In addition, noble metal nanoparticles, such as Ag nanoparticles, doped on the surface of TiO₂ nanotubes can increase their photocatalytic activities and can be easily fabricated by a photochemical deposition method under UV light irradiation. Among various methods to fabricate of TiO₂ nanotubes fabricated by using block copolymer (BCP) lithography and reactive ion etching (RIE) can form uniformly aligned nanoscale morphorlogies.

In this study, using the TiO₂ nanotubes fabricated with BCP lithography, TiO₂ atomic layer deposition (ALD), and RIE and Ag nanoparticles precipitated on TiO₂ nanotubes by a photochemical method, the photocatalytic effect of TiO₂ nanotubes with/without Ag nanoparticles was investigated by measuring the concentration change of a methylene blue solution. The photocatalytic effect of TiO₂ nanotubes was higher than flat TiO₂ film because of the increased TiO₂ surface area. Also, Ag nanoparticles attached on the TiO₂ nanotubes further improved the photocatalytic effect by facilitating electron–hole separation and promoting interfacial electron transfer process through the Ag nanoparticles. However, when the amount of Ag nanoparticles on TiO₂ nanotubes are too much, possibly due to the decreased UV penetration to TiO₂ by the increased surface area covered with Ag nanoparticles, the photocatalytic effect was decreased. By precipitating 7~9 nm size Ag nanoparticles for 20 min on 40~50 nm diameter/50~60 nm height TiO₂ nanotubes, the highest photocatalytic effect could be obtained.