

FIG. 1. Transfer $I-V$ curves for representative TFTs with ZnO layers annealed at $600,700,800$, and $900^{\circ} \mathrm{C}$.


FIG. 2. Temperature-dependent transfer I-V curves for representative TFTs with ZnO layers annealed at (a) 600, (b) 700, (c) 800, and (d) $900^{\circ} \mathrm{C}$.

Arrhenius equation:

$$
\begin{equation*}
I_{D}=I_{D P} \exp \left(-\frac{E_{a}}{k_{B} T}\right) \tag{1}
\end{equation*}
$$

where $I_{D P}$ is a pre-factor, $E_{a}$ is the activation energy, $k B$ is the Boltzmann constant and $T$ is the measurement temperature, respectively.

The Meyer-Neldel (MN) rule:

$$
\begin{equation*}
I_{D P}=I_{D P P} \exp \left(A E_{a}\right), \tag{2}
\end{equation*}
$$

where $I_{D P P}$ is the pre-factor of $I_{D P}$ and $A$ is the MN parameter.


FIG. 3. Calculated DOSs from the subthreshold regime for all measured ZnO TFTs with different annealing temperature. DOSs of 600, 700, 800 and $900{ }^{\circ} \mathrm{C}$ annealed ZnO TFTs are black, red, green and blue marks, respectively. Marks with different shapes represent different transistors that have been measured.

