Capacitance-voltage characteristics of graphene-gate MOS devices: The effect of graphene quantum capacitance Ruixue Lian and Ant Ural

Figure 1. 3D schematic of a graphene/oxide/Silicon MOS device showing the applied gate voltage V_g .

Figure 2. The numerically computed quantum capacitance of graphene in the presence of charged impurities C_Q as a function of the graphene electrostatic potential V_{ch} at different temperatures *T*.

Figure 3. The numerically computed quantum capacitance of graphene in the presence of charged impurities C_Q as a function of the graphene electrostatic potential V_{ch} at different strengths of the potential energy fluctuations *s*.

Figure 4. The numerically computed total gate capacitance C_g as a function of the gate voltage V_g at different temperatures *T*. V_{Dirac} denotes the Dirac voltage.

Figure 5. The numerically computed total gate capacitance C_g as a function of the gate voltage V_g at different strengths of the potential energy fluctuations *s*. V_{Dirac} denotes the Dirac voltage.

Figure 6. Full C_g - V_g curves of the graphene/oxide/Si MOS device at different equivalent oxide thicknesses ranging from 1 to 30 nm.