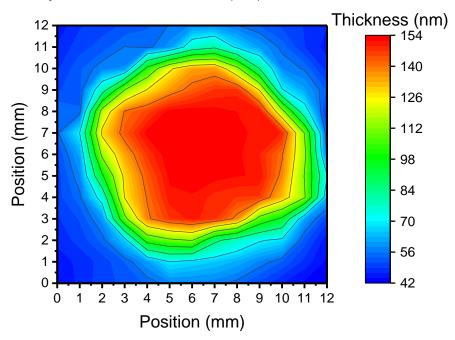

Boron Nitride Film Growth at Room Temperature Using Electron Enhanced Atomic Layer Deposition (EE-ALD)


Jaclyn K. Sprenger¹, Huaxing Sun¹, Andrew S. Cavanagh¹ and Steven M. George^{1,2}
¹Department of Chemistry and Biochemistry, ²Department of Mechanical Engineering,
University of Colorado, Boulder, CO 80309 USA

Jaclyn.Sprenger@Colorado.edu

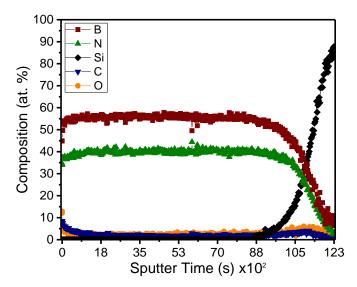

Figure 1: EE-ALD BN film (blue) growth spot on Si (111) wafer. Growth shape determined by electron flux across the substrate surface. Pictured film is ~150 nm thick from ~500 BN EE-ALD cycles.

Figure 2: *Ex situ* spectroscopic ellipsometry spatial profile of film described in Figure 1. Growth shape determined by electron flux across the Si(111) substrate surface.

Figure 3: XPS depth profile of EE-ALD BN film grown on Si (111) wafer. BN composition is consistent throughout the film with a B/N ratio of 1.3/1. C and O concentrations are <3 at.% in the bulk of the film.

