(Supplemental)

Oxide film ALD using OH radicals generated by mixing pure ozone gas with hydrogen-included molecular gas over 200°C.

N. Kameda et al.

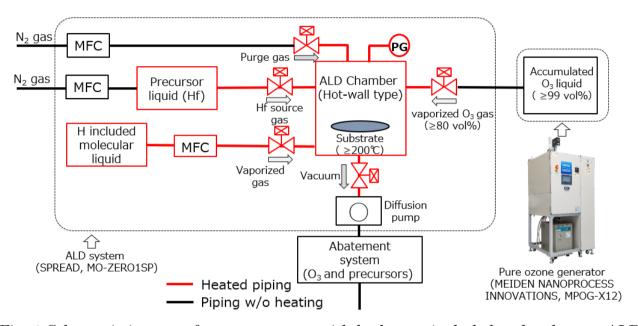


Fig. 1 Schematic images of pure ozone gas with hydrogen-included molecular gas ALD system for the HfO₂ film deposition. Pure ozone and hydrogen-included molecular gas are mixed in the ALD chamber.

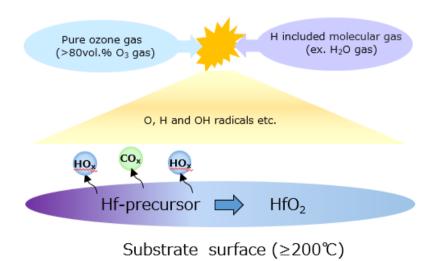


Fig. 2. Schematic images of oxidation step of ALD for the HfO₂ film deposition. Thermal assistance from heating the substrate surface activates the reaction between pure ozone and hydrogen-included molecular gas, generating various radicals including OH radicals.

This work

Oxidation Film sources qualities	Pure ozone +H included molecular gas	O ₂ plasma	Pure ozone	Ozonizer ozone
Electric properties (Ex. dielectric)	0	0	Δ	Δ-
Step coverage	0	×	0	0-
Productivity (Bach processing)	0	×	0	0-

Table. 1. Comparison table of the expected Hf_2O film quality using various oxidation species. Relative evaluation between O_2 plasma, pure ozone and ozonizer ozone based on the film quality already obtained for Al_2O_3 and SiO_2 films.