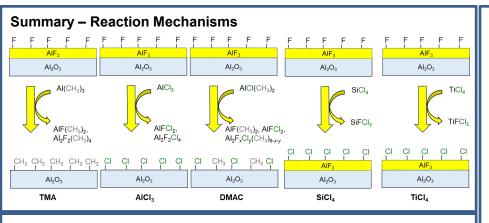
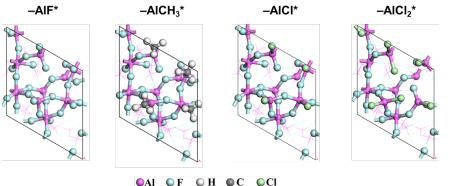
Removal Reaction Mechanisms During Thermal Atomic Layer Etching of Aluminum Oxide: A First-Principles Study


CUNITY GAA 1940 1940

Khabib Khumaini, 1,2 Gyejun Cho, 1 Hye-Lee Kim, 1 and Won-Jun Lee, 1,*


¹Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul Republic of Korea ²Department of Chemistry, Universitas Pertamina, Jakarta, Indonesia

Precursor

 ${}^{\star}\text{Corresponding author: } \underline{\text{wilee@sejong.ac.kr}}$

Amorphous AIF₃ slab models used in this study

Simulation of Removal Reactions

Step

	AI(CH ₃) ₃	1	$(AIF)_3AIF^* + AI(CH_3)_3 \rightarrow (AIF)_3AICH_3^* + AIF(CH_3)_3$	0.23	-0.87
		2	$(AIF)_3AICH_3^* + AI(CH_3)_3 \rightarrow -AI + -AI_2F + AI_2F_2(CH_3)_4$	1.08	-0.85
	AICI ₃	1	(AIF) ₃ AIF* + AICl ₃ → (AIF) ₃ AICI* + AIF(CH₃)₃	1.00	-0.19
		2	$(AIF)_3AICI^* + AICI_3 \rightarrow -AI + -AI_2F + AI_2F_2CI_4$	0.84	-0.51
	AICI(CH ₃) ₂	1a	$(AIF)_3AIF^* + AICI(CH_3)_2 \rightarrow (AIF)_3AICH_3^* + AIFCICH_3$	0.17	-0.57
		1b	$(AIF)_3AIF^* + AICI(CH_3)_2 \rightarrow (AIF)_3AICI^* + AIF(CH_3)_2$	0.15	-0.16
		2a	$(AIF)_3AICH_3^* + AICI(CH_3)_2 \rightarrow -AI + -AI_2F + AI_2F_2CI(CH_3)_2$	0.74	-0.32
		2b	$(AIF)_3AICI^* + AICI(CH_3)_2 \rightarrow -AI + -AI_2F + AI_2FCI_2(CH_3)_2$	0.54	-0.24
	SiCl ₄	1	1. (AIF) ₃ AIF* + SiCl ₄ → (AIF) ₃ AICI* + SiFCl₃	0.74	-0.42
			2. (AIF) ₃ AICI* → −AI + −AI ₂ F + AIF₂CI	1.63	0.15
		2	1. $(AIF)_3AICI^* + SiCI_4 \rightarrow (AIF)_2(AICI)AICI^* + SiFCI_3$	1.06	-0.41
			2. $(AIF)_2(AICI)AICI^* \rightarrow -AI + -AI_2F + AIFCI_2$	1.62	0.17
		3	1. $(AIF)_2(AICI)AICI^* + SiCI_4 \rightarrow (AIF)(AICI)_2AICI^* + SiFCI_3$	1.42	0.29
			2. $(AIF)(AICI)_2AICI^* \rightarrow -AI + -AI_2F + AICI_3$	0.77	-0.62
	TiCl ₄	1	1. (AIF) ₃ AIF* + TiCl ₄ → (AIF) ₃ AICI* + TiFCl ₃	0.51	-0.14
			2. $(AIF)_3AICI^* \rightarrow -AI + -AI_2F + AIF_2CI$	1.63	0.15
		2	1. $(AIF)_3AICI^* + TiCI_4 \rightarrow (AIF)_2(AICI)AICI^* + TiFCI_3$	0.25	-0.12
			2. (AIF) ₂ (AICI)AICI* → −AI + −AI ₂ F + AIFCI ₂	1.62	0.17
		3	1. $(AIF)_2(AICI)AICI^* + TiCI_4 \rightarrow (AIF)(AICI)_2AICI^* + TiFCI_3$	0.97	0.66
L			2. (AIF)(AICI) ₂ AICI* → −AI + −AI ₂ F + AICI ₃	0.77	-0.62

Reactions

ΔG