Remarkable stability and hydrogen resistance on high-mobility oxide TFTs via N2O plasma reactant in atomic layer deposition

So Young Lim^a, Sang-Hyun Kim^b, Yoon-Seo Kim^a, Tae-Won Hwang^a, and Jin-Seong Park^{a, b, *}

^a Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

^b Department of Display Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdonggu, Seoul 04763, Republic of Korea

(*corresponding author: jsparklime@hanyang.ac.kr)

AA13: Display Application: Thin Film Transistor, Diodes, Thin Film Encapsulation for OLEDs/QDs...

Figure 1. (a) Schematic of the Al_2O_3 deposition process using N_2O plasma reactant. (b) Nitrogen doping concentration and film density of Al_2O_3 as a function of plasma power.

Figure 2. (a) Schematic of TFTs using Al_2O_3 gate insulators with a SiO₂ protective layer. (b) Summary of electrical properties of IGZO TFTs with respect to N₂O plasma power.

Figure 3. (a) Schematic of hydrogen annealing at 350 °C, 3 h. (b) Device properties before and after hydrogen annealing.