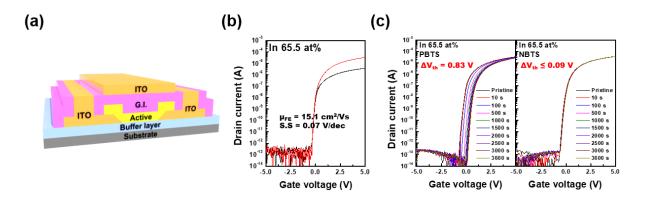

Crystallinity Control through Composition Engineering for High-Performance MgIn_xO_v TFTs via Thermal Atomic Layer Deposition

Ji-Su Bae¹, Chi-Hoon Lee¹, Sung-Hae Lee^{2,*}, and Jin-Seong Park^{1,*}


¹ Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.

² Entegris Korea, 109 Gwanggyo-ro, Yeongtong-Gu, Suwon 16229, Republic of Korea (*corresponding author: jsparklime@hanyang.ac.kr, SungHae.Lee@entegris.com)

Supplemental Document

Figure 1. (a) Deposition process of $MgIn_xO_y$ films with various cation composition ratios involving sub-cycle ratio adjustments for In_2O_3 and MgO. (b) Cation composition ratio of $MgIn_xO_y$ films by XPS analysis. (c) Crystallinity evaluation (d) Full width at half maximum (FWHM) and crystalline size using XRD with different metal cation compositions. (e) GIWAXS patterns for $MgIn_xO_y$ films (In 50.1 at% and In 65.5 at%)

Figure 2. (a) Schematic illustration of fabricated top-gate bottom-contact structure TFTs with $MgIn_xO_y$ as active layer. (b) Transfer characteristics of the $MgIn_xO_y$ (In 65.5 at%) TFTs (c) Results of reliability evaluation (PBTS, NBTS) of the $MgIn_xO_y$ (In 65.5 at%) TFTs.

Acknowledgement

This work was supported by Entegris under the joint project agreement between Entegris Korea and Hanyang University.