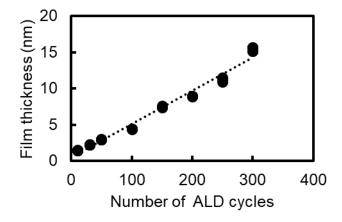

Atomic Layer Deposition of SnO Film Using Liquid Sn(EtCp)₂ Precursor and Combinations of H₂O and H₂ Plasma


F. Mizutani, N. Takahashi, and T. Nabatame

SnO film thickness as a function of number of ALD cycles. The ALD process consisted of a $Sn(EtCp)_2$ pulse time of 0.2 s and an H_2O pulse time of 3 s.

SnO film thickness as a function of (a) $Sn(EtCp)_2$ pulse time, (b) H_2O pulse time, and (c) H_2 plasma pulse time for films deposited for 30 cycles. The $Sn(EtCp)_2$ pulse time, H_2O pulse time, and H_2 plasma pulse time, except those that were varied, were 0.2, 3, and 5 s, respectively.

SnO film thickness as a function of number of ALD cycles. The ALD process consisted of a $Sn(EtCp)_2$ pulse time of 0.2 s, a H_2O pulse time of 3 s, and a H_2 plasma pulse time of 5 s.