

Figure 1: Thickness measurements of (a) ALD SnO_2 deposited on blanket Si and PMMA substrates and (c) ALD Ta_2O_5 deposited on blanket Si and PMMA substrates. XPS measurements of (b) 80 cycles of ALD SnO_2 on blanket Si and PMMA substrates and (d) 80 cycles of ALD Ta_2O_5 on blanket Si and PMMA substrates. The results confirm the selectivity of the ALD processes, demonstrating linear ALD growth on Si with negligible growth on PMMA up to 100 cycles.

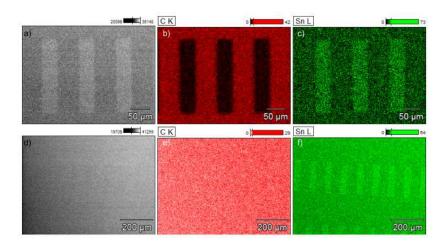


Figure 2: EDS mapping scans of ALD SnO_2 films deposited on a PMMA patterned substrate: (a) Pattern image and elemental maps for (b) C and (c) Sn for as-deposited films on the pattern. (d) Pattern image and elemental maps for (e) C and (f) Sn after removing the template PMMA layer using O₂ plasma. The images demonstrate that PMMA can inhibit the growth of ALD SnO_2 and the compatibility of this process with AS-ALD.

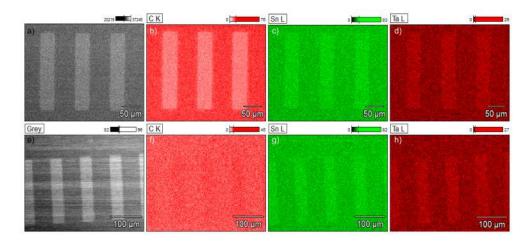


Figure 3: EDS mapping scans of bilayer ALD SnO_2 -Ta₂O₅ films deposited on a PMMA patterned substrate: (a) Pattern image, elemental maps for (b) C, (c) Sn and (d) Ta for as-deposited films on the pattern. (e) Pattern image, elemental maps for (f) C, (g) Sn and (h) Ta after removing the template PMMA layer using O₂ plasma. The results indicate that PMMA can inhibit the growth of both ALD SnO₂ and Ta₂O₅ and the compatibility of PMMA with AS-ALD using two separate dimethylamide precursors.