In-situ crystallization of ferroelectric Hf_{0.5}Zr_{0.5}O₂ thin films with ## record-high 2P_r (56μC/cm²) at low thermal budget (300°C) towards ## full BEOL-compatibility Peng Yuan^{1, #}, Lu Tai^{2, #}, Xueli Ma¹, Jinjuan Xiang^{1,*}, Guilei Wang^{1,*}, Jiezhi Chen², Chao Zhao¹ ¹Beijing Superstring Academy of Memory Technology, Beijing, China ²School of Information Science and Engineering, Shandong University, Qingdao, China; #These authors contribute equally to this work. *Email: Jinjuan.xiang@bjsamt.org.cn; Guilei.wang@bjsamt.org.cn In barely over a decade, HfO₂-based ferroelectric thin film went from the early research stage to possibly being integrated into backend- of-line (BEOL) and even industrialized. Acting as the dielectric layer in the 1T1C unit for ferroelectric random-access memory (FRAM) or Dynamic random-access memory (DRAM), HfO₂-based ferroelectric thin film should be compatible with the thermal budget ($<400^{\circ}$ C) of BEOL process, especially in advanced nodes. However, a high rapid thermal annealing (RTA) temperature beyond 400°C seems indispensable for HfO₂-based ferroelectric thin film. Nowadays, seeking a lower thermal budget ($<400^{\circ}$ C) has been a hot topic in the area of HfO₂-based ferroelectric materials. A real sense of a low thermal budget for ferroelectric HfO₂-based materials with both high $P_{\rm r}$ and endurance remains a great challenge. In this work, we present a process solution in thermal ALD for fabricating ferroelectric $Hf_{0.5}Zr_{0.5}O_2$ (HZO) capacitors annealed at 300°C with high remanent polarization (P_r) and good endurance for full compatibility with BEOL. Record-high $2P_r$ values in 300°C-annealed ($56~\mu\text{C/cm}^2$) $Hf_{0.5}Zr_{0.5}O_2$ (HZO)-based metal-ferroelectric- metal (MFM) devices are demonstrated by using an in-situ crystallization process in atomic layer deposition, i.e., using TDMA-based precursors and interfacial O_3 engineering at a slightly higher temperature of 320°C. This work is believed to leading a trend in fabricating the fully BEOL-compatible HZO ferroelectric devices, especially for advanced nodes requiring a much lower thermal budget. Fig.1. Basic electric characterizations of 11-nm thick TiN/HZO/TiN stacks annealed at a rather low temperature of 300°C. (a) initial and (b) wake-up P-V hysteresis curves measured by positive-up-negative-down (PUND) measurement. Fig.2. Typical $2P_{\rm r}$ cycling behaviors of HZO MFM stacks deposited at different temperatures. Fig.3. Benchmark of low-thermal-budget HZO capacitors results.