## Area-Selective Deposition of 2D-MoS<sub>2</sub> using Self-Assembled Monolayer

Jeong-Hun Choi<sup>1</sup>, Dong Geun Kim<sup>1</sup>, Seo-Hyun Lee<sup>1</sup> and Ji-Hoon Ahn<sup>1</sup>

<sup>1</sup>Department of Materials Science and Chemical Engineering, Hanyang University, ERICA, Korea E-mail : ajh1820@hanyang.ac.kr

Layered two-dimensional molybdenum sulfide (MoS<sub>2</sub>) has attracted great interest for a promising candidate material for opto-electronics and photo sensors applications due to its unique characteristics such as tunable bandgap, high electron mobility and high current on/off ratio. Significant efforts have been placed to apply MoS<sub>2</sub> in industrial fields, leading to significant progress in the deposition method of MoS<sub>2</sub>.<sup>[1],[2]</sup> However, patterning technology for MoS<sub>2</sub> remains a challenge. In particular, 2D materials like MoS<sub>2</sub> have extremely thin and weak interlayer bonding due to the absence of dangling bonds, making it difficult to apply traditional top-down patterning approach. Therefore, we demonstrated a new area-selective deposition method for  $MoS_2$ using self-assembled monolayer (SAM). To prevent the degradation of SAM, the deposition of  $MoS_2$  was carried out using a pulsed metal-organic chemical vapor deposition (MOCVD) method, which allowed for the synthesis of high-quality  $MoS_2$  at a low temperature. The growth of  $MoS_2$  was effectively prevented by the SAM patterned using photolithography processes. The selectivity for  $MoS_2$  according to the length of the SAM backbone was investigated using X-ray Fluorescence spectroscopy and Raman measurement. Additionally, the influence of the SAM coating process on the crystallinity and impurity concentration of the MoS<sub>2</sub> film was confirmed using X-ray diffraction and X-ray photoelectron spectroscopy. Furthermore, the potential of area-selective deposition of MoS<sub>2</sub> using SAM was demonstrated by fabricating a MoS<sub>2</sub> gas sensor.



Fig1. (a) Raman spectra of MoS<sub>2</sub> thin films deposited on bare SiO<sub>2</sub> and on SAM coated area. (b) The optical microscope image of MoS<sub>2</sub> patterned using SAM. (c) Raman mapping image of area indicated by the red rectangle in (b).

**References** [1] Hyun, Cheol-Min, et al. *Journal of Alloys and Compounds*, 2018, 765: 380-384. [2] Kang, Kibum, et al. *Nature*, 2015, 520.7549: 656-660.