Simulated conformality of ALD in lateral high aspect ratio channels: Impact of Knudsen number on the saturation profile

<u>Christine Gonsalves</u>¹, Jorge A. Velasco,¹ Jänis Järvilehto,¹ Jihong Yim,¹ Ville Vuorinen,² Riikka L. Puurunen¹

¹ Aalto University, School of Chemical Engineering, Department of Chemical and Metallurgical Engineering, Espoo Finland.

² Aalto University, School of Engineering, Department of Mechanical Engineering, Espoo Finland.

Figure 1: Surface coverage profiles in lateral high-aspect-ratio channels, simulated with the Ylilammi et al. [1,2] model at constant reactant exposure of 10 Pa·s. The simulations are for different channel heights (a) 10 nm, with Kn 10° to 10^{6} , (b) 100 nm, with *Kn* 10^{-1} to 10^{5} , (c) 1 μ m, with *Kn* 10⁻² to 10⁴, (d) 10 μ m with *Kn* 10^{-3} to 10^{3} , (e) 100 µm with *Kn* 10^{-4} to 10^{2} , (f) 1 mm, with Kn 10^{-5} to 10^{1} , (g) 1 cm, with $Kn \ 10^{\circ}$ to 10^{-6} , (h) 500 nm, with $Kn \ 10^{-2}$ to 10^4 . To maintain a constant exposure of 10 Pa·s, the time was varied in the range of 10^{-3} to 10^{3} s and the initial reactant partial pressure in the range of 10⁻² to 10⁴ Pa. Parameters that were kept constant: $T = 250 \text{ °C}, p_1 = 9 \times p_{A0}, d_A =$ 6×10^{-12} m, $d_1 = 3.4 \times 10^{-12}$ m, $M_A = 0.0749$ kg/mol, $M_1 = 0.03994$ kg/mol, $L = 500 \mu m$ $W = 1 \text{ cm } P_{d} = 10^{-4} \text{ s}^{-1}, c = 10^{-2}, q =$ $4 \times 10^{18} \text{ m}^{-2}$, N = 1. The panel (h) with the grey background (H= 500 nm) corresponds to the typical PillarHall[™] case [2].

References

 M. Ylilammi, O.M.E. Ylivaara, and R.L. Puurunen, J. Appl. Phys., 123, 205301, (2018).

[2] J. Yim, E. Verkama et al., Phys. Chem. Chem. Phys. 24 (2022) 8645.
[3] <u>http://pillarhall.com/</u> [accessed 09.02.2023]