

Fast and Efficient Large Format ALD

Matt Weimer

Figure 1: Image of the scaled precursor delivery manifold, made of four individual precursor delivery valve stacks, to enable fast and efficient large format ALD.

Figure 2: Image of a sample carrier for ALD deposition in the large format ALD tool to highlight the usable area for deposition. The diameter is approximately 525mm.

Table 1: Comparison of process parameters and film properties between the standard 200mm and large format 525mm tools at 125° C. Note that the CRISP conversion half-cycle used in the SiO₂ ALD process is a proprietary process. The CRISP process uses a non-metal catalyst to facilitate Si-O bond formation.

Process	Growth	Thickness	525mm	Time per 100nm	Refractive	Extinction
	per cycle	uniformity	time per	comparison	Index	coefficient
	(Å/cy)	(% full range)	cycle (s)	(min)	(633nm)	(633nm)
Al_2O_3	0.94	5.0	2.25	7 minutes longer	1.59	0.00
TMA/H ₂ O				(40 total)		
TiO ₂	0.54	5.0	2.5	5 minutes	2.44	0.00
TiCl ₄ /H ₂ O				shorter (78 total)		
SiO ₂	1.2	5.0	3	5 minutes longer	1.46	0.00
BEMAS/CRISP				(42 total)		