Present affiliation of <u>Chanyoung Yoo</u>: SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States, E-mail: cyyoo@stanford.edu

Figure 1. Top-view SEM images and illustrations of Sb₂Te₃ films deposited on SiO₂ substrates (a-d) without and (e-h) with the a-GeTe buffer layer. The images show the films deposited without the buffer layer after (a) 200, (b) 500, and (c) 1200 cycles of Sb₂Te₃ ALD, and with the buffer layer after (e) 80 cycles of GeTe ALD, followed by (f) 100, and (g) 400 cycles of Sb₂Te₃ ALD. The inset images are bird's eye-view SEM images taken at a 70° tilt from the surface normal direction, and the layer density of each layer is indicated in the bottom right corner of each image.

Figure 2. (a) Variation of layer density (left y-axis) and thickness (right y-axis) of the Sb₂Te₃ film as a function of the number of ALD cycles, with different thicknesses of the a-GeTe buffer layer (0, 2.5, 3.5, and 7.0 nm-thick). (b) Variation of layer density (left y-axis) and thickness (right y-axis) of the a-GeTe buffer layer as a function of the number of Sb₂Te₃ cycles. (b) Linear correlation between the saturated layer density (left y-axis) and thickness (right y-axis) and thickness (right y-axis) of the Sb₂Te₃ layer as a function of the a-GeTe layer density. (d) Process flow for ALD of Sb₂Te₃ film utilizing an amorphous GeTe film as a buffer layer. Chemical formulas on the surface indicate the Ge, Sb, and Te-precursors.

Figure 3. Cross-sectional TEM images of a Sb₂Te₃ film on a three-dimensional contact hole structure (a-c) without, and (d-f) with an a-GeTe buffer layer.