

Figure 1: Growth characteristics and material properties of $Nb_xW_{1-x}S_2$ alloys grown by PEALD. a) the thickness evolution of pure NbS_2 and WS_2 and two alloys as measured by in-situ spectroscopic ellipsometry. b) the composition of the alloys as a function of the ALD cycle fraction follows the ideal rule of mixtures, while the stoichiometry varies from overstoichiometric for W-rich films to understoichiometric for Nb-rich films. c) the morphology changes significantly with alloy composition: the highest density of out-of-plane oriented crystallites is observed for NbS_2 : WS_2 cycle ratio 1:3 (x=0.54). d) raman spectroscopy shows an evolution from polycrystalline WS_2 to mostly amorphous NbS_2 . e) comparing cross-sectional HAADF-STEM micrographs of the standard $(AC)_m(BC)_n$ supercycle process to the modified $(AC)_m(ABC)_n$ process shows the latter results in significantly lower density of out-of-plane oriented crystallites, which is accompanied by an improvement in the electronic properties of the film as demonstrated by the Hall measurements shown in f).