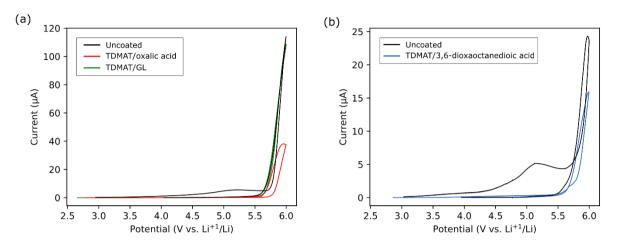

Supplementary

Titanium carboxylate MLD hybrid films as protective coatings for lithium-ion batteries


Sofie S. T. Vandenbroucke^{a,b}, Lowie Henderick^a, Louis T. De Taeye^{b,c}, Jin Li^a, Karolien Jans^b, Philippe M. Vereecken^{b,c}, Jolien Dendooven^a and Christophe Detavernier^a

a Department of Solid State Sciences, CoCooN group, Ghent University, Belgium b imec Leuven, Belgium

c Centre for Surface Chemistry and Catalysis, KU Leuven, Belgium

Figure I All precursors used in this work (a) and the growth per cycle (GPC) of the TDMAT/oxalic acid (b), TDMAT/malonic acid (c), TDMAT/succinic acid (d), TDMAT/glutaric acid (d) and TDMAT/3,6-dioxaoctanedioic acid (f) process at a sample temperature of 100 °C as a function of precursor exposure time. The GPC is monitored using in situ ellipsometry.

Figure 2 Cyclic voltammogram of the uncoated and 5 nm MLD coated TiN electrodes. The electrolyte decomposition on the TDMAT/oxalic acid and titanicone (a) and the TDMAT/3,6-dioxaoctanedioic acid coated electrode (b) is compared to an uncoated reference electrode which is measured simultaneously.