Effect of Ti Scavenging Layer on Ferroelectricity of $\mathbf{H f}_{\mathrm{x}} \mathbf{Z r}_{1-\mathrm{x}} \mathbf{O}_{2}$ Thin Films Fabricated by Atomic Layer Deposition Using Hf/Zr Cocktail Precursor

Takashi Onaya et al.

Fig. 1 Schematic illustrations of metal-ferroelectric-semiconductor (MFS) capacitors with and without a Ti scavenging layer. A post metallization annealing (PMA) was performed at 300 or $400^{\circ} \mathrm{C}$ for 1 min in N_{2} ambient. The $\mathrm{Hf} / \mathrm{Zr}$ ratios in HZO films were estimated to be $0.43 / 0.57$ evaluated by X-ray photoelectron spectroscopy.

Fig. 2 Capacitance (C) of MFS capacitors with and without a Ti layer as a function of the PMA temperature. The MFS capacitors after PMA at $300^{\circ} \mathrm{C}$ showed almost the same C of $0.8 \mu \mathrm{~F} / \mathrm{cm}^{2}$ regardless of the presence of a Ti layer. After the PMA at $400^{\circ} \mathrm{C}$, the MFS capacitors with a Ti layer exhibited slightly higher C of $1.5 \mu \mathrm{~F} / \mathrm{cm}^{2}$ than that ($1.3 \mu \mathrm{~F} / \mathrm{cm}^{2}$) without a Ti layer.

Fig. 3 Polarization-electric field $(P-E)$ hysteresis curves of MFS capacitors (a) without and (b) with a Ti layer. (c) Remanent polarization ($2 P_{\mathrm{r}}=P_{\mathrm{r}}^{+}-P_{\mathrm{r}}^{-}$) of MFS capacitors with and without a Ti layer as a function of the PMA temperature. The higher $2 P_{\mathrm{r}}$ value ($33 \mu \mathrm{C} / \mathrm{cm}^{2}$) of the MFS capacitor with a Ti layer was achieved compared to that $\left(26 \mu \mathrm{C} / \mathrm{cm}^{2}\right)$ without a Ti layer after the PMA at $400^{\circ} \mathrm{C}$.

