Thermal and Plasma Enhanced Atomic Layer Deposition of TiO₂ from Amide and Alkoxide Precursors: Growth Characteristics and Photoelectrochemical Performance.

S.O'Donnell,^a F.Jose,^a K.Shiel,^a M.Snelgrove,^a C.McFeely,^a R.O'Connor,^a

^{*a*} School of Physical Sciences, Dublin City University, Dublin 9, Ireland. ⁺ Author for correspondence: <u>shane.odonnell42@mail.dcu.ie</u>

Accompanying Abstract Figures

Figure 1: XPS core level signal evolution increasing number of ALD Ti cycles, from 0 to 65 cycles, depicting the change in composition as the thickness of the titanium overlayer increases during TDMAT thermal growth. (a) Evolution of the O1s photoemission peak as it changes from a SiO₂ dominant peak TiO₂ dominant (b) Attenuation of the SiO₂ peak is shown (c) Ti2p region showing peak intensity increase with increasing cycles (d) C1s peak showing remnant carbon incorporation in the film.

Figure 2: Voltammetry measured photocurrent vs 1.23 V RHE as a function of sample treatment stage.