

Effect of Surface Cleaning Efficacy on Vapor-phase Surface Cleaning of Cu and Co for Area-Selective Atomic Layer Deposition Using Anhydrous N₂H₄

Su Min Hwang,^a Jin-Hyun Kim,^a Dan N. Le,^a Aditya Raja Gummadelly,^a Yong Chan Jung,^a Jean-Francois Veyan,^a Daniel Alvarez,^c Jeff Spiegelman,^c and Jiyoung Kim^{a,*}

Figure 1. *Ex-situ* XPS spectra of Cu^3 and Co samples before (black) and after (red) N_2H_4 exposure at 200 °C, 300 mTorr. (a) Cu 2p, (b) O 1s of Cu, (c) Co 2p, and (d) O 1s of Co. Both Cu and Co XPS result demonstrates the reduction capability of N_2H_4 . Reduction of both carbon oxide and metal oxide bond can be observed in O 1s scan of both Cu and Co. The *ex-situ* condition makes the surface re-oxidize while sample transfer as shown in O 1s scan in both cases.

Figure 2. Differential IR spectrum of (a) Cu and (b) Co samples treated using N_2H_4 at 200 °C and 350 °C, respectively. In the case of Cu, surface is oxidized to Cu₂O under the exposure of air and the Cu₂O is reduced to metallic Cu with N_2H_4 treatment and 200 °C. On the other hand, Co surface is formed with Co₂O₃ and CoO and the reduction of the oxides requires higher temperature (350 °C) due to the relatively stability of CoO_x.

¹ P. Kapur, et al., IEEE Trans. Electron Devices **49**, 590 (2002).

² M.F.J. Vos et al., J. Phys. Chem. C **122**, 22519 (2018).

³ S.M. Hwang, et al., ECS Trans. **92**, 265 (2019).