

Figure 1: Pt-wire temperature sensors fabrication flow:

- Five different Pt wires of different thickness have been printed using Atomic-layer 3D printer by repeating 100, 200, 300, $400 \& 500$ ALD cycles of $\mathrm{MeCpPtMe}_{3}+\mathrm{O}_{3}$ with a write speed of $\sim 2 \mathrm{~mm} / \mathrm{s}$.
- The width of each wire was $400 \mu \mathrm{~m}$, defined by the size of the printer nozzle.
- Au contact pads for measurement purposes have been deposited using conventional PVD Au through a shadow mask, defining the length of each sensing element $=2 \mathrm{~mm}$.
- red-dashed rectangles mark the areas where plane-view SEM micrographs (below) were taken

Figure 2: Plane-view SEM micrographs of the fabricated Pt temperature sensors, deposited by 200 (left) vs. 400 (right) ALD cycles. Low magnification images in the center display the entire width of the (horizontally-running) Pt wires. Magnifications on the sides show the wires' edges (top row) and the film structure inside the Pt wires - magnified 100.000 X (bottom row). As typical for this thermal Pt ALD process, the film grows as a progressively densening network of Pt grains.

Figure 3: a) Resistance vs. temperature curves of selected sensors. Films of 200 cycles show rather high resistance strongly dependent on the fabrication temperature while for thicker films (300-500 cycles) the resistivity (deposition-temperature regardless) is comparable to the 30 nm e-beam PVD Pt wire. b) Summary of the temperature sensitivity (\mathbf{S}) of printed sensors of different thickness for different fabrication temperatures, in comparison to a 30 nm thick PVD Pt wire (thickness comparable to 400 ALD cycles sample) and a Pt100 standard. c) Temperature coefficient of resistivity $\boldsymbol{\alpha}$ (S normalized by room temperature resistance) for the investigated sensors. Most of the printed sensors show higher α values than the conventional 30 nm PVD Pt thin film wire sensor and are comparable to the Pt 100 standard.

