
Interface chemistry in metal halide perovskite/ALD metal oxide systems

A.E.A. Bracesco¹, C. Burgess¹, A. Todinova¹, V. Zardetto², D. Koushik¹, W.M.M. Kessels^{1,2}, I. Dogan², C.H.L. Weijtens¹, S. Veenstra², R. Andriessen², M. Creatore^{1,2}

¹Department of Applied Physics, Eindhoven University of Technology (TU/e), 5600 MB Eindhoven, The Netherlands

²Solliance, High Tech Campus 21, 5656 AE Eindhoven, The Netherlands

Supplementary Information:

Overview of results: (left) ALD processing of SnO₂ and TiO₂ directly on top of a CsFAPb(I,Br,)3 perovskite absorber. The corresponding PSC devices (shown here the JV curves) are characterized by non-working devices for ALD SnO₂ and an 11% non-optimized PCE, for ALD TiO₂. The poor performance of devices employing ALD SnO₂ can be related (right) to the chemical modifications induced at the perovskite surface by the ALD process. Specifically, ALD growth of SnO₂ directly on top of the perovskite leads to the formation of molecular halides states and to a sub-stoichiometric SnO₂ layer which exhibits sub-gap defects above its valence band maximum. The presence of these defects states is expected to reduce the charge selectivity of SnO₂ by inducing non-radiative electron-hole recombination at the perovskite/SnO₂ interface.