

## Low Temperature Ferroelectric Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> Films deposited by thermal atomic layer deposition using high purity H<sub>2</sub>O<sub>2</sub>

Jin-Hyun Kim,<sup>a</sup> Yong Chan Jung,<sup>a</sup> Su Min Hwang,<sup>a</sup> Heber Hernandez-Arriaga,<sup>a</sup> Jaidah Mohan,<sup>a</sup> Dan Le,<sup>a</sup> Daniel Alvarez,<sup>b</sup> Jeff Spiegelman,<sup>b</sup> and Jiyoung Kim<sup>a,\*</sup>



**Figure 1.** (a) XRD patterns of 10 nm HZO films fabricated with O<sub>3</sub> and H<sub>2</sub>O<sub>2</sub>. RTA annealing temperature varied from 300 °C to 400 °C. 400 °C annealed HZO showed similar phase configurations in both oxidants (left). From 325 °C, HZO using H<sub>2</sub>O<sub>2</sub> as oxidant started to show orthorhombic phase. (b) XPS spectra of C 1s in 400 °C annealed HZO films after 6 s of surface sputtering. Both HZO using H<sub>2</sub>O<sub>2</sub> and O<sub>3</sub>, the carbon peak was not detectable, which shows that the carbon content is under the detection limit of 1 at%.



**Figure 2.** (a) Polarization-electric field hysteresis curves of 10 nm HZO samples fabricated with  $O_3$  (left) and  $H_2O_2$  (right) and varying the temperature from 300 °C to 400 °C. HZO using  $H_2O_2$  starts to show the ferroelectric characteristics from 325 °C, and  $O_3$  starts from 350 °C. (b) Leakage current density-electric field curves of 400 °C annealed 10 nm HZO samples using  $H_2O_2$  and  $O_3$  as oxidant. HZO based on  $H_2O_2$  showed smaller leakage current and slightly higher breakdown voltage compared to  $O_3$  case.