Precision Defect Engineering of Metal/Insulator/Metal (MIM) Diodes using Localized ALD Transition Metal Impurities

K.E.K. Holden, Y. Qi, and J.F. Conley, Jr.*

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331 *jconley@eecs.oregonstate.edu

Figures

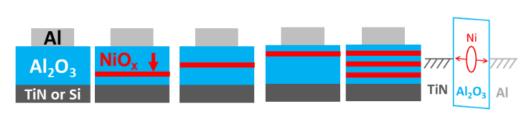


Fig. 1. Schematic cross sections showing position of NiO_x layer and band diagram showing approximate theoretical energy level of Ni impurities in Al_2O_3 .

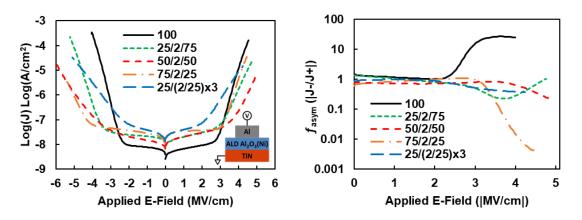


Fig. 2. *J*- \mathscr{E} (left) and corresponding f_{asym} - \mathscr{E} (right) curves for TiN/Al₂O₃/Al devices without (black solid line) and with (dashed lines) intentionally placed Ni defects.

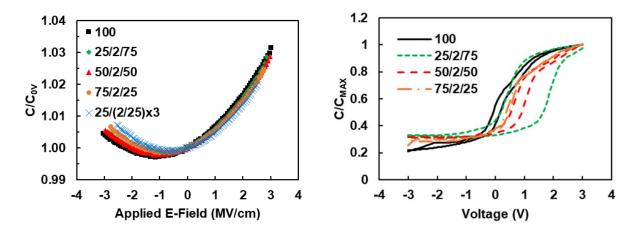


Fig. 3. Left) Normalized capacitance density (C/C_{0V}) vs. & and for TiN/Al₂O₃/Al MIM and Right) normalized capacitance (C/C_{MAX}) vs. V for MOS devices with and without intentionally placed Ni defects (as indicated).