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Fig. 1 (a) Pulse write/read results of as-grown and PMA-treated 10-nm-thick PE-ALD HZO films after 

wake-up cycling (103 cycles at 3.0 MV/cm). The PE-ALD HZO film after PMA at 300°C clearly exhibited 

ferroelectricity with Psw of 28 µC/cm2, while the as-grown HZO film showed smaller hysteresis with Psw of 

3.5 µC/cm2. The Psw increased as PMA temperature increased. (b) Relationship between the process 

temperature and the Psw of the ferroelectric HfO2-based thin films. In general, an annealing process at > 

400°C is necessary to obtain HfO2-based films with stable ferroelectricity. On the other hand, the superior 

ferroelectricity of HZO films was obtained using PE-ALD and a low temperature PMA even at 300°C. 

   
Fig. 2 (a) Synchrotron WAXS patterns of as-grown and PMA-treated 10-nm-thick PE-ALD HZO films. The 

WAXS pattern of the as-grown film showed a broad peak at ~2.94Å, indicating that the as-grown film had 

nanocrystalline structure with O/T/C phases. The peak position of O(111)/T(101)/C(111) was shifted from 

2.95 to 2.99Å as PMA temperature increased. (b) Psw and k value of as-grown and PMA-treated PE-ALD 

HZO films. The peak position of d-spacing for O(111)/T(101)/C(111), which extracted from Fig. 2 (a), 

increased as PMA temperature increased. Moreover, the Psw of PE-ALD HZO films increased with PMA 

temperature, while those films showed almost the same k value of ~40. These results suggest that the phase 

transformation from C/T-phases to ferroelectric O-phase could occur during PMA process. 
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