Increased WS₂ Crystal Grain Size by Controlling the Nucleation Behavior during Plasma Enhanced Atomic Layer Deposition

<u>B. Groven</u>^{1,2}, A. Nalin Mehta^{1,3}, H. Bender², J. Meersschaut², T. Conard², A. Franquet², T. Nuytten², W. Vandervorst^{2,3}, M. Heyns^{2,4}, M. Caymax², I. Radu², A. Delabie^{1,2}
¹ Department of Chemistry, ³ Department of Physics, ⁴ Department of Materials Engineering, KU Leuven (University of Leuven), B-3001 Leuven, Belgium
² imec, B-3001 Leuven, Belgium

Figure 1. Evolution of WS₂ nucleation density and maximal crystal grain size with reactivity of starting surface, deposition temperature and reactor pressure, for an equivalent amount of deposited WS₂. The WS₂ is grown by PEALD from WF₆, H₂ plasma and H₂S on amorphous Al₂O₃ and SiO₂ starting surfaces at two different deposition temperatures (300 °C and 450 °C) and reactor pressures (2 Torr and 8 Torr), respectively. The micrographs reveal the crystalline structure of the as-grown WS₂ layers along the (0001) axis from plan-view transmission electron microscopy (300 °C, Al₂O₃ and 450 °C, SiO₂) and atomic force microscopy (only for 300 °C, SiO₂), respectively. Horizontal scalebar (inset) in each micrograph is set to 100 nm. The nucleation density and crystal grain size are extracted by analyzing the morphology of the WS₂ crystals for a series of atomic force micrographs during the nucleation phase of the PEALD process.