

Improving Interfacial Stability of Sulfide-based Lithium-Ion-Conducting Solid Electrolytes with ALD

J. M. Wallas¹, A. M. Heist², S. H. Lee², S. M. George^{1,2}

¹Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA ²Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA <u>jasmine.wallas@colorado.edu</u>

Figure 1. Cell composed of symmetric Li electrodes with $Li_{10}GeP_2S_{12}$ solid electrolyte. The Al_2O_3 ALD coating was applied to the $Li_{10}GeP_2S_{12}$ solid electrolyte prior to the assembly of the cell.

Figure 2. Chemical stability of interface between $Li_{10}GeP_2S_{12}$ and Li metal as measured by internal resistance of $Li/Li_{10}GeP_2S_{12}/Li$ cell at $60^{\circ}C$. $Li_{10}GeP_2S_{12}$ electrolyte coated with 5, 15, and 25 cycles of Al_2O_3 ALD had greater interfacial stability than uncoated $Li_{10}GeP_2S_{12}$ electrolyte.