

Figure 1. (left) The cycle for area-selective ALD of SiO₂ consists of acetylacetone (step A), $H_2Si[N(C_2H_5)_2]_2$ precursor (step B), and O₂ plasma (step C). (right) Nucleation curves measured by *in-situ* spectroscopic ellipsometry (SE) for SiO₂ ABC ALD cycles on different starting materials. Immediate growth is obtained on SiO₂ and GeO₂, while nucleation delays occur on Al₂O₃, TiO₂, and HfO₂.

Figure 2. *In-situ* Fourier transform infrared (FTIR) spectra recorded after Hacac dosing (A) and $H_2Si[N(C_2H_5)_2]_2$ precursor dosing (B) during SiO₂ ABC ALD cycles on (left) an Al₂O₃-coated substrate, (right) a SiO₂-coated substrate. The graph for Al₂O₃ shows adsorption of a large amount of Hacac, and blocking of $H_2Si[N(C_2H_5)_2]_2$ precursor adsorption during the subsequent pulse. The graph for SiO₂ reveals that only a small amount of Hacac adsorbs on SiO₂, which does not significantly affect the adsorption of the $H_2Si[N(C_2H_5)_2]_2$ precursor.