ALD vanadium oxides for 3D thin-film lithium ion batteries (Supplementary information)

<u>Felix Mattelaer</u>¹, Kobe Geryl¹, Thomas Dobbelaere¹, Geert Rampelberg¹, Jolien Dendooven¹, Christophe Detavernier¹

1 Ghent University, Dept. Solid State Sciences, CoCooN group, Ghent, Belgium (felix.mattelaer@ugent.be)

Figure 1. Obtained capacities for the thin-film crystalline vanadium oxides as a function of C-rate, where a C-rate of 1 corresponds to a charge of discharge of the theoretical capacity in 1 hour. Bulk cathodes are shown for comparison from literature (Nitta *et al*).

Figure 2. Comparison of the electrochemical performance of the amorphous and crystalline VO_2 and V_2O_5 ALD films.

Figure 3. Kinetic capacity retention of amorphous VO_2 , crystalline VO_2 (B) and crystalline V_2O_5 . The solid symbols represent planar films, while the hollow symbols represent the films deposited on silicon micropillar arrays.