Tuesday Morning, November 7, 2023

Actinides and Rare Earths Focus Topic Room C124 - Session AC+MI+TH-TuM

Magnetism, Electron Correlation, and Superconductivity in the Actinides/Rare Earths

Moderators: Edgar Buck, PNNL, Tomasz Durakiewicz, Idaho National Laboratory, Krzysztof Gofryk, Idaho National Laboratory

8:00am AC+MI+TH-TuM-1 Uranium and Cerium Based Systems Probed with High-Pressure XANES and XMCD, Fabrice Wilhelm, A. Roagelv, ESRF, France INVITED

This talk reviews recent advances in use of polarized x-rays to study local magnetic properties and electronic structure of uranium and cerium based compounds such as the ferromagnetic UGe₂, the heavy-fermion paramagnet UTe₂ and the nanolamellar ferromagnetic Kondo lattice Mo₄Ce₄Al₇C₃ system.

8:40am AC+MI+TH-TuM-3 Searching for New Uranium-Based Arsenides, Eteri Svanidze, Max Planck Institute for Chemical Physics of Solids, Germany As new classes of superconducting materials emerge, puzzles of hightemperature superconductivity continue to be one of the pressing issues in condensed matter physics and solid-state chemistry. In particular, iron pnictide superconductors still pose many open questions. Surprisingly, very few actinide-based analogues of iron pnictide high temperature superconductors have been reported so far, perhaps as a result of synthesis complications imposed by toxicity, reactivity, and high vapor pressure of constituent elements. In this work, we revisit the U-Fe-As ternary, in which only one compounds has been reported to exist so far - UFeAs₂ (P4/nmm space group) [1]. By implementing flux synthesis, we were able to grow large single crystals of UFe₅As₃ compound, which adopts UCr₅P₃ structure type [2] ($P2_1/m$, mP18) with lattice parameters a = 7.0501(17) Å, b =3.8582(9) Å and c = 9.6342(13) Å, $\theta = 100.2(8)^{\circ}$ [3]. The refined composition agrees well with the elemental ratio established by the EDX analysis -U_{9.9(2)}Fe_{58.7(2)}As_{31.4(2)}. The magnetic behavior of UFe₅As₃ was studied by magnetic susceptibility measurements in the temperature range 1.8 - 600 K and an antiferromagnetic ordering below $T_{\text{\tiny N}}$ = 56 K was established. The Sommerfeld coefficient g = $138 \text{ mJ/mol} \text{ K}^2$ indicates enhanced effective electron mass. More in-depth investigations of this and other U-Fe-As ternary compounds are currently underway.

References:

[1] D. Kaczorowski, J. Alloys. Compd. 186, 333-338 (1992).

[2] W. Jeitschko, R. Brink, P.G. Pollmeier, Z. Naturforsch. (1993) 48b, p. 52-57.

[3] N.Zaremba, M. Krnel, Yu. Prots, A. Leithe-Jasper, Yu. Grin, E. Svanidze, in preparation (2023)

9:00am **AC+MI+TH-TuM-4** *5f* **Magnetism at an Extreme**, *Ladislav Havela*, Charles University, Faculty of Mathematics and Physics, Czechia; *V. Buturlim*, Idaho National Laboratory; *F. Honda*, Tohoku University, Japan; *D. Kaczorowski*, Institute of Low Temperature and Structure Research, Wrocław, Poland

Specific features of 5*f* magnetim in U-based systems, namely the strong spin-orbit coupling and very strong magnetic anistropy or giant magnetoresistance, are degraded by low temperatures of magnetic ordering. The variability of T_c or T_N in intermetallics has been explored and it turns out that involvement of magnetic *d*-metals such as Fe or Co does not help, unless very high fraction of the transition metals turns a compound in fact a regular *d*-magnet, in which the unique 5*f* features are suppressed. The reason is the 5*f*-*d* hybridization with a destabilizing action on both *d* and 5*f* moments.

Seeking additional degrees of freedom we turned towards compounds with more polar character of bonding, which drives U to the verge of metallicity. Interesting alternative to intermetallics is provided by Zintl phases, typically ternary compounds with one cation (e.g. an *f*-metal) and a complex covalently bond anion, stabilized by a charge transfer from the cation. An excellent insight is provided by such compounds with layered crystal structures, which leads to strongly anisotropic electronic properties. Our research focuses on Zintl phases with the trigonal CaAl₂Si₂ type (*P*-3*m*), formed by alternating cationic (Ca) and anionic (Al-Si) layers. Those without *f*-metals or with 4*f* metals tend to be narrow-gap semiconductors. U-based phases such as UCu₂P₂ are semi-metallic. The prominence of this compound dwells in ferromagnetism with high Curie temperature *T*_c = 216 K, which is

further enhanced by pressure application to the vicinity of room temperature. Ab-initio calculations reveal it this material is actually a halfmetal, with spin-split 5*f* band bringing spin-up only states to the Fermi level. The conduction electron states remain hybridized with the 5*f* states, which causes also the non-f electrons to be fully spin polarized. The magnetisms is of local moment type, with magnetic entropy exceeding R*ln2, but arising from 5*f* bands. UCu₂P₂ can be compared with EuZn₂P₂. Here the Eu²⁺ moments are organized in an AF structure. The field alignment of the moments impacts the width of the gap seen in transport data, but the material remains semiconducting.

This work was supported by the Grant Agency of the Czech Republic under the grant No. 21-09766S.

9:20am AC+MI+TH-TuM-5 Valence-to-Core RIXS in Insulating Compounds with 4f and 5f Elements, *Jindrich Kolorenc*, Institute of Physics, Czech Academy of Sciences, Czechia

In the first part, we investigate the electronic structure of europium sulfide (EuS) with the aim to understand the valence-to-core resonant inelastic xray scattering (RIXS) spectra measured at the Eu L₃ edge. We show that the main part of the observed signal comes from the direct RIXS: an Eu 2p core electron is excited to an empty Eu 5d band above the Fermi level, and then another electron from an Eu 5d state hybridized with the S 3p bands (located below the Fermi level and hence occupied) fills back the core hole. Besides this straightforward channel, the measured RIXS spectra display two satellite features. After considering several candidates (such as excitations of the 4f shell excited by indirect RIXS processes, that is, by the interaction with the core hole in the intermediate state), we arrive at the conclusion that the satellites are excitons formed by a 4f hole and an 5d electron localized at the same Eu atom. Such excitons were suggested in the context of optical absorption a long time ago [1], but the concept is not widely accepted. It was argued that existence of these excitons is incompatible with photoconductivity measurements [2]. Our observations indicate that these arguments may need to be revisited.

In the second part, we simulate valence-to-core RIXS at the actinide M_5 edge in selected actinide oxides starting from the dynamical mean-field electronic structure obtained earlier [3] and using techniques similar to [4]. This investigation is motivated by the recent experimental study of UO₂ and UF₄ [5]. Our preliminary results suggest that the feature observed at an energy loss of roughly 10 eV above the white line is likely a charge-transfer excitation, the intensity of which is sensitive to the hybridization between the actinide 5f states and the ligand 2p states.

This work was supported by the Czech Science Foundation under the grant No. 21-09766S.

[1] T. Kasuya and A. Yanase, Rev. Mod. Phys. 40 (1968) 684, https://doi.org/10.1103/RevModPhys.40.684

[2] P. Wachter and B. Bucher, Physica B 408 (2013) 51, https://doi.org/10.1016/j.physb.2012.09.018

[3] J. Kolorenc, A. Shick, A. I. Lichtenstein, Phys. Rev. B 92 (2015) 085125, https://doi.org/10.1103/PhysRevB.92.085125

[4] J. Kolorenc, Physica B: Condensed Matter 536 (2018) 695, https://doi.org/10.1016/j.physb.2017.08.069

[5] J. G. Tobin et al., J. Phys.: Condens. Matter 34 (2022) 505601, https://doi.org/10.1088/1361-648X/ac9bbd

9:40am AC+MI+TH-TuM-6 Magnetism of Binary Actinide Oxides, Binod Rai, A. Bretaña, Savannah River National Laboratory; G. Morrison, University of South Carolina, Columbia; R. Greer, Savannah River National Laboratory; K. Gofryk, Idaho National Laboratory; H. zur Loye, University of South Carolina, Columbia

Historically, the bulk of actinide oxide research has focused on the properties of various uranium and plutonium compounds as they impact their use in the nuclear fuel industry. While the fundamental understanding of compounds such as UO_2 has improved, a fundamental grasp of the physical properties of other actinide oxides remains elusive. In actinide systems, the 5*f* electrons experience a uniquely delicate balance of effects and interactions having similar energy scales, which are often difficult to properly disentangle. The interplay of factors such as the dual character of 5*f*-states, competing interactions, and strong spin-orbit coupling results in magnetically unusual and intriguing behavior: multi-*k* antiferromagnetic ordering, multipolar ordering, mixed valence configurations, and more. In this presentation, I will provide an overview of the available synthesis techniques for selected binary actinide oxides. I will also show the current state of knowledge on their crystal structures and magnetic properties.

Tuesday Morning, November 7, 2023

phonons

Moreover, I will talk about the future opportunities that are vital for a fundamental understanding of these systems.

11:00am AC+MI+TH-TuM-10 N-Point Saddle-Band Model for the Hidden Order Phase of URu₂Si₂, J. D. Denlinger, Lawrence Berkeley National Laboratory; J. Kang, The Catholic University of Korea; L. Dudy, SOLEIL, France; J. Allen, University of Michigan; L. Wray, New York University; A. Gallagher, R. Baumbach, National High Magnetic Field Laboratory; N. Butch, University of Maryland; M. Maple, University of California, San Diego

The 5f heavy fermion system of URu₂Si₂ is famous for an unconventional hidden order (HO) phase transition at T₀=17.5K and the various related doping phase diagrams explored to elucidate the nature of this unknown transition. A new model of an extended U 5f saddle-point dispersion at the N-point is proposed for the underlying physics of this 35-year old puzzle. With a 10X DFT energy renormalization suggested by angle resolved photoemission (ARPES) measurements in comparison to DMFT calculations [1], this feature lies only a few meV below $E_{\rm F}$ and thus is thermally active at To. ARPES reveals a distinct temperature-dependent evolution of incommensurate 5f nesting hotspots lying along Z-N-Z [1], whose origins are found in electronic susceptibility calculations of intraband q-scattering for thermal occupations in the temperature range of T₀. Tuning of the Npoint region f-band energetics with chemical doping is thus naturally proposed to unify our understanding of the various phase diagrams. ARPES is presented which confirms the existence of N-point spectral and dichroic changes for ferromagnetic Re/Ru-substitution, for (001) antiferromagnetic Fe and Os/Ru-substitution, and for (1/2,1/2,1/2) antiferromagnetic P/Sisubstitution, thus further demonstrating experimentally the key relevance of the N-point electronic structure to the HO phase. [1] J. D. Denlinger et al., Electron. Struct. 4, 013001 (2022).

11:20am AC+MI+TH-TuM-11 Magnetoelastic Properties of 5f Ferromagnet UCu₂P₂, Volodymyr Buturlim, Idaho National Laboratory; P. Doležal, O. Koloskova, J. Prchal, Charles University, Czechia; I. Turek, Charles university, Czechia; M. Martinez Celis, CRISMAT Laboratory, France; F. Honda, Kyushu University, Japan; M. Divis, Charles University, Czechia; D. Kaczorowski, Polish Academy of Sciences, Poland; K. Gofryk, Idaho National Laboratory; L. Havela, Charles University, Czechia

UCu₂P₂, a Zintl phase with the trigonal CaAl₂Si₂ structure type, is a 5f ferromagnet with a record-high Curie temperature among U compounds, Tc = 216 K [1]. While the size of the magnetic moment 2.0 μ_B/U is not surprising due to U-U spacing exceeding the Hill limit, the reasons for the high T_c are less understood. Ab-initio calculations reveal only very weak hybridization of the U-5*f* states with the 6*d* states as well as with electronic states of Cu and P. It seems that a transfer of U-6d states to the P-3p states is an important ingredient, which was highlighted by a rapid increase of T_{C} under hydrostatic pressure so that a room-temperature 5f ferromagnetism could be demonstrated. Besides magnetization, transport, and heat capacity studies on single crystals we performed also characterization of a polycrystalline material, which has $T_{\rm C}$ = 219 K. Thermal expansion study revealed a moderate increase of both lattice parameters just below T_{c} , so we can exclude that the pressure enhancement of $T_{\rm C}$ is driven simply by thermodynamics (via the Ehrenfest relation). Hence the reasons have to be attributed to the enhancement of specific U-U couplings upon compression. Indeed, ab initio calculations probing the energy enhancement upon moments reversal gave a semi-quantitative account of the observed tendency of $T_{\rm C}$.

[1] D. Kaczorowski, R. Troc, Magnetic and transport properties of a strongly anisotropic ferromagnet UCu₂P₂, J. Phys. Condens. Matter, 1990, 2, 4185.

*This work was supported by the Czech Science Foundation under the grant No. 21-09766S.

11:40am AC+MI+TH-TuM-12 Density Functional Theory Calculations of the Phonons in Gamma and Delta Phase Pu, Sven P. Rudin, Los Alamos National Laboratory

The thermodynamics of plutonium challenges both theory and experiment. The challenge arises from the multiple structural phase transitions, the nature of the 5f electrons, and the effects due to the material's self-irradiation. Density functional theory calculations have made steady progress toward clarifying experimental measurements. Recently, for the delta phase a non-collinear 3Q spin structure was shown to make all structurally equivalent bonds equivalent in their bonding character. This results in elastic constants and phonons with the correct symmetry, and the calculated phonon dispersion agrees well with experiment. Extending the calculations into the gamma phase of Pu now provides a prediction for the

phase.

12:00pm AC+MI+TH-TuM-13 The 5f UDOS of the Actinide Dioxides: Why Pu is n = 5 in PuO₂, James Tobin, University of Wisconsin-Oshkosh; H. Ramanantoanina, KIT, Germany; C. Daul, U. Fribourg, Switzerland; S. Yu, LLNL; P. Roussel, AWE, UK; S. Nowak, R. Alonso-Mori, T. Kroll, D. Nordlund, T. Weng, D. Sokaras, SSRL

The Unoccupied Density of States (UDOS) of ThO₂, UO₂ and PuO₂ have been investigated with a combined experimental and theoretical approach.^{1,2}Ligand field density functional theory calculations of the dioxides of thorium, uranium, and plutonium have been combined with high-energy-resolution fluorescence detection (HERFD) in x-ray absorption spectroscopy and inverse photoelectron spectroscopy (IPES) measurements to provide powerful insight into the underlying composition of the unoccupied 5f electronic structure in these 5f localized systems. Fine structure in the 5f_{5/2} transitions in HERFD can be directly correlated with the fine structure in the leading edge of the IPES. The shapes, intensities, and systematics in HERFD and IPES are explained in a consistent and rigorous fashion in terms of the j-specific 5f electronic structure. Additionally, an actinide N_{4,5} branching ratio analysis of PuO₂ and UO₂ has been performed, including measurements with a scanning transmission electron microscope at the Advanced Light Source and simulation with FEFF. It is shown that the 5f occupation of the Pu in plutonium dioxide is n = 5.

References

- J. G. Tobin,H. Ramanantoanina, C. Daul, S.-W. Yu, P. Roussel, S. Nowak, R. Alonso-Mori, T. Kroll, D. Nordlund, T.-C. Weng, D. Sokaras, "The Unoccupied Electronic Structure of Actinide Dioxides," *Phys. Rev. B* 2022, **105**, 125129.https://doi.org/10.1103/PhysRevB.105.125129
- J. G. TobinandS.-W. Yu, "Pu5f Occupation in Plutonium Dioxide," Inorg. Chem. 2023, 62, 6, 2592–2598, https://doi.org/10.1021/acs.inorgchem.2c03202

Tuesday Afternoon, November 7, 2023

Actinides and Rare Earths Focus Topic Room C124 - Session AC+MI+TH-TuA

Chemistry and Physics of the Actinides/Rare Earths

Moderators: Ladislav Havela, Charles University, Czech Republic, Eteri Svanidze, Max Planck Institute for Chemical Physics of Solids, Gertrud Zwicknagl, Technical University Brauschweig

2:20pm AC+MI+TH-TuA-1 Electronic Structure Methods for f-Block Elements: Are We There Yet?, X. Li, Chad Hoyer, University of Washington INVITED

The computational modeling of rare-earthy and heavy-element complexes requires an accurate treatment of spin-orbit and electron correlation effects to fully understand the physical underpinnings of their chemical properties. The fully correlated frequency-independent Dirac-Coulomb-Breit Hamiltonian in a multireference framework provides the most accurate description of electron-electron interaction before going to a genuine relativistic quantum electrodynamics theory of many-electron systems. Our recent studies using many-body multireference methods suggest that there is a significant correlation effect of inner-valence electrons in rare-earth and heavy-element complexes. Ignoring this effect could lead to inaccurate descriptions of molecular properties, such as covalency, bonding, and spectroscopic response. In this talk, we will examine how the correlation effect of inner-valence electrons is manifested in molecular properties with a focus on the covalency in rare-earth and heavy-element complexes.

3:00pm AC+MI+TH-TuA-3 Structures and Electronic States of Actinide and Lanthanide Complexes with Phenanthroline Derivatives, Tsuyoshi Yaita, Japan Atomic Energy Agency, Japan INVITED

Actinides and lanthanides are f-electron elements, and thus their chemical behavior is very similar if they have the same valence. Recently, the demand for lanthanides, especially specific lanthanides such as Nd, Tb, and Dy, is increasing with the realization of a carbon-neutral society and the shift to EVs for vehicle, and there is a growing need to find new resources and recycle them from urban mines. On the other hand, in the case of geological disposal of radioactive waste generated from nuclear power generation, separation of minor actinides such as Am, which are long-lived α -nuclides, is very important from the viewpoint of recycling in a geological repository in a small country like Japan, and the establishment of separation of specific f elements from solutions such as high-level liquid waste containing a wide variety of lanthanides and actinides will, needless to say, increase more and more.

Here, we have been new synthesized phenanthroline amide derivatives (phenanthroline amide: PTA) with N and O as donor elements for these purposes. These ligands achieve separation of a special f-element by recognize slight size differences or utilize differences in their interactions with the donor elements.

In this talk, the chemical bonding properties of phenanthroline ligands to actinides and lanthanides by XAS/XES and RIXS using soft X-rays, the structural properties of tridentate and tetradentate PTA derivatives by single crystal structural analysis and EXAFS, respectively, will be presented. Taken together, the mechanisms governing ion recognition of PTA derivatives will be reported.

4:20pm AC+MI+TH-TuA-7 Unraveling the Unique Properties of f-Element Terpyridyl Complexes, Alyssa Gaiser, Michigan State University; C. Celis-Barros, Colorado School of Mines; F. White, Oak Ridge National Laboratory; T. Albrecht-Schoenzart, Colorado School of Mines INVITED A terpyridine derivative was synthesized with the lanthanides and several trivalent actinides targeted at probing differences between americium and curium. In addition to investigating high quality structural data on both the americium and curium concluding in a slight increase in covalent character in the americium system, the cerium and berkelium analogs proved to be even more interesting exhibiting enhanced covalent character in the

curium. In addition to investigating high quality structural data on both the americium and curium concluding in a slight increase in covalent character in the americium system, the cerium and berkelium analogs proved to be even more interesting, exhibiting enhanced covalent character in the system. This terpyridyl system continues to provide novel behavior throughout the *f*-elements exemplifying the inverse trans influence throughout the series with the interaction between the terpyridyl and the nitrate molecule in the same plane.

5:00pm AC+MI+TH-TuA-9 Electronic Properties of Plutonium Oxycarbide, *Paul Roussel*, AWE plc, UK

Plutonium is both electropositive and highly reactive, such that an oxide film of varying thickness is always present on metal samples. It is of interest from a safety point of view (reduced handling/processing) to investigate methods that either prevent or slow down the rate of the corrosion reaction of the metal. This can be achieved by alloying with a suitable quantity of gallium [1] or via the formation of a surface film of plutonium oxycarbide, PuO_xC_y (where $x+y \le 1$) [2].Plutonium oxycarbide films have the NaCl structure and were initially called plutonium monoxide, PuO.Plutonium oxycarbide films are formed from the bulk to surface diffusion of the ubiquitous carbon impurity in the metal [3]. However, to date, there little understanding the electronic properties of plutonium oxycarbide films. The aim of this work is to investigate the electronic structure of plutonium oxycarbide surface films using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and inverse photoemission spectroscopy (IPES).XPS measurements have been acquired at elevated temperature following the Pu 4f, O 1s and C 1s / Pu 5p1/2 spectral regions on both alloyed and pure plutonium samples following sputter cleaning and oxidation at room temperature.UPS and IPES were acquired at room temperature following the formation of the surface plutonium oxycarbide film. All three spectroscopic measurements display a two peak structure consistent with a partially localized and itinerant 5f electronic structure for plutonium oxycarbide. Finally, the Auger parameter (Pu $N_7O_5V - Pu 4f_{7/2}$) for plutonium oxycarbide films of varying carbon and oxygen stoichiometries are compared to the recently reported values for plutonium metal and the homoleptic plutonium oxides [1].

[1] XPS characterization of a PuGa-7 at. % alloy, P. Roussel, S. C. Hernandez, J. J. Joyce, K. S. Graham, T. Venhaus, J. Vac. Sci. Technol. A 41, 023204 (2023).

[2] Retardation of plutonium oxidation by a PuO surface film, D. T. Larson, D. L. Cash, J. Vac. Sci. Technol. 9, 800 (1972).

[3] Initial studies of plutonium corrosion, P. Roussel, D. S. Shaw, D. A. Geeson, J. Nucl. Sci. Technol.39:sup3, 78 (2002).

5:20pm AC+MI+TH-TuA-10 Exploring the Surface and Subsurface Behavior of Hydrogen in δ -Pu(100) and Bulk δ -Pu Through Density Functional Theory, *Charles Fricke*, *S. Hernandez*, Los Alamos National Laboratory

The corrosion of plutonium to form its hydride creates significant challenges in handling, researching, and storing of the metal. Plutonium hydrides rapidly, much faster than most metals, and the kinetics are less well understood. Significant questions remain, including the energetics of hydrogen formation in different lattice sites, such as the tetrahedral, octahedral, and vacancy sites, as well as its reactive behavior on and in the surface of metallic plutonium. As such, this work aims to explore how hydrogen behaves within face-centered-cubic δ -plutonium from the surface into the subsurface and into the bulk through density functional theory. We find that hydrogen is energetically favored to remain on the surface, but that the energetics of hydrogen in the first subsurface remains thermodynamically favorable for both the subsurface tetrahedral and octahedral sites when compared to the referenced gas-phase hydrogen molecule. We also find that the octahedral site remains thermodynamically favorable for hydrogen species to fill from the 2nd subsurface to the bulk in δ -Pu(100). In addition, we find we have subsurface to bulk formation energy convergence at the 3^{rd} sublayer of δ -Pu(100). Finally, we will discuss the energetics differences of hydrogen between the surface, subsurface, and bulk within δ -Pu.

5:40pm AC+MI+TH-TuA-11 Nanoscale Nuclear Materials: Synthesis and Advanced X-Ray Characterization of Uranium Oxide Nanoparticles, *Liane Moreau*, Washington State University, US

Nanostructures (particularly with sizes below 10 nm) are inherently challenging to characterize on the atomic scale, due to broadening which occurs in diffraction-based characterization methods, and the high concentration of surface defects and energy-minimization effects. Characterization challenges compound when investigating nanoscale actinide oxides, such as uranium oxide, due to radioactive sample constraints and rich electronic structure which can potentially stabilize a wide range of crystallographic arrangements. To address these challenges, x-ray spectroscopic and scattering based methods are used to probe challenging nanoscale systems in detail over multiple length scales. In particular, synthetic developments are paired with robust characterization, in order to improve knowledge of nanoparticle growth and transformation,

Tuesday Afternoon, November 7, 2023

as well as develop ways to make advanced x-ray characterization analysis more informed and accessible, in tandem.

Nanoscale uranium oxides are of interest towards the development of accident-tolerant nuclear fuels and are also relevant to the migration of actinides in environmental systems. Synthetic methods will be presented, which have enabled preliminary investigation into the size and morphology-dependent properties of uranium oxides. Specifically, the synthesis of UO₂ anisotropic nanoparticles and the deposition of uranium onto iron nanoparticles will be highlighted. These synthetic pursuits have been paired with x-ray spectroscopy and x-ray scattering to create new analysis strategies for decoupling surface vs. interior chemistry of nanoparticles of uranium oxide as a function of particle size and morphology. The studies presented give a glimpse into the interesting fundamental and behavioral differences between actinide nanomaterials and their counterparts elsewhere on the periodic table.

6:00pm AC+MI+TH-TuA-12 A Statistical Mechanics Treatment of Multiconfigurational Ground States in Isolated Neutral Atoms, *Miles Beaux*, Los Alamos National Laboratory

Janoschek, et al. described the ground state of plutonium (Pu) as being, "governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations." [Science Advances, 1, 6 (2015)]. However, a casual internet search of the electronic structure of Pu gives [Rn]7s²5f⁶ which is wholly insufficient to describe the complex nature of its multiconfigurational ground state as described by Janoschek, et al. A better description might be given by

[Rn]7s^{2+ y s,Pu} 5f^{6+ y f,Pu} 6d^{0+ y d,Pu} 7p^{0+ y p,Pu}

where $\gamma_{s,Pu}$, $\gamma_{d,Pu}$, $\gamma_{d,Pu}$, $\gamma_{p,Pu}$ represent potentially non-integer deviations from the integer electron occupancies of their respective orbitals. By judiciously selecting bounding conditions for how the eight valence electrons can distribute themselves within the given orbitals, a limited number of occupancy configurations can be identified with an identifiable number of cumulative allowable electron permutations. For example, the bounding conditions

$-2 \le \gamma_{s,Pu} \le 0,$ -2 \le \cap_{j,Pu} \le 2, 0 \le \cap_{d,Pu} \le 2, \cap_{p,Pu} = 0, and

 $\gamma_{s,Pu}+\gamma_{f,Pu}+\gamma_{d,Pu}+\gamma_{P,Pu}=0$ result in nine possible occupancy configurations

7s²5f⁶6d⁰7p⁰, 7s²5f⁶6d¹7p⁰, 7s²5f⁴6d²7p⁰, 7s¹5f⁷6d⁰7p⁰, 7s¹5f⁶6d¹7p⁰, 7s¹5f⁶6d²7p⁰, 7s⁰5f⁸6d⁰7p⁰, 7s⁰5f⁷6d¹7p⁰, 7s⁰5f⁶6d²7p⁰

with 487,630 cumulative possible electron permutations. With the specific number of permutations identified, principles of statistical mechanics can be applied to multiconfigurational ground states.

Similar generalized representations of ground state electronic structures will be described for each element in the periodic table. Classical Boltzmann's entropies for the respective electronic structures will be calculated by considering the possible electron permutations as statistical mechanics microstates. These entropies will then be compared to known standard molar entropies.

LA-UR-23-24803

Tuesday Evening, November 7, 2023

Actinides and Rare Earths Focus Topic Room Oregon Ballroom 203-204 - Session AC-TuP

Actinides and Rare Earths Poster Session

AC-TuP-2 Magnetic Properties of Lu doped Ce-Fe-B Magnets, Alex Bretaña, B. Rai, C. Housley, H. Ajo, SRNL; G. Morrison, H. zur Loye, University of South Carolina

Permanent magnets are integral components needed for future clean energy technologies, however the growing demand for Nd-Dy and Sm-Co based permanent magnets is exacerbating the current critical materials shortage. Designing, developing, and optimizing critical material free permanent magnets is essential for the future economy. Ce2Fe14B, based on Nd₂Fe₁₄B permanent magnets, is an attractive low-cost alternative due to the highly abundant rare-earth Ce, however, it displays several drawbacks, a rather low Curie temperature Tc, as well as a low magnetocrystalline anisotropy. Chemical substitutions have been shown to improve both Tc and the magnetic properties; Co, La, Ni, and Si have been shown to improve Tc, while La and Co have also been shown to improve the saturation magnetization, Ms, while Hf, Ga, Ge, Ti, and Zr doping improved the magnetic properties though microstructure and grain refinement. We prepared Lu doped $(Lu_xCe_{2-x})Fe_{14}B$ (x = 0.05,0.1, and 0.15) alloys and studied their microstructure and magnetic properties before and after heat treatment. In this presentation, we will present X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy measurements, as well as temperature dependent magnetization and isothermal magnetization measurements on Lu doped Ce₂Fe₁₄B.

AC-TuP-3 A Novel Approach to the FTA Procedure for Nuclear Forensics, *Itzhak Halevy*, Ben Gurion uni., Israel; *R. Babayew, Y. Yehuda-Zada, N. Elgad*, Engineering and Physics Departments, Nuclear Research Centre Negev, Beer-Sheva, Israel; *J. Lorincik*, Nuclear Fuel Cycle Department, Research Centre Rez, Czech Republic; *I. Orion*, Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Israel; *A. Weiss*, Faculty of Engineering, Bar Ilan University, Israel; *G. Katarivas Levy*, Department of Biomedical Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Israel

Our laboratory has created a novel approach to the FTA procedure.

The query posed pertains to the presence of supplementary data within the detector image, beyond the star's spatial coordinates. Are there any further physical factors that hold forensic significance?

The acquisition of these novel findings was made possible through the creation of a state-of-the-art simulation tool, known as Trainer, specifically designed for the examination of fission stars.

The simulator in question is utilized for conducting a comprehensive examination of an individual fission star, as well as for generating an image that closely resembles the image acquired by a standard light microscope.

One significant initial finding is the feasibility of identifying the specific fissile isotope by an analysis of the trace lengths observed in the Lexan detectors. Another significant outcome is the capacity to examine individual fission traces arising from minuscule particles of fissile material (D<0.1 μ m), which cannot be individually quantified using instrumentation like ICPMS-MC or comparable devices.

One notable finding is the relatively poor efficacy associated with the detection of individual fission traces. This phenomenon can be attributed to multiple sources. The acquisition of a fission trace is contingent upon the presence of a minimum angle between the fission trace and the lexan detector, which varies for each isotope. If this angle falls below the specified threshold, no fission trace will be observed. The circular trace produced by the fission product at an angle near 90 degrees exhibits a diameter of approximately one micron, posing challenges in its identification and differentiation from the surrounding background noise.

The newly developed "Trainer" simulator provides a platform for novice employees to engage in practical exercises aimed at facilitating their journey towards certification. This simulator also incorporates an evaluative component, enabling the assignment of a performance grade to individuals based on their simulated performance. Currently, there exists the capability to generate a substantial repository of images that can be utilized as a foundational resource for machine learning through the implementation of artificial intelligence techniques.

The coloring of traces in the Lexan detector is a novel product that is dependent on their depth. Initial investigations conducted using a fluorescent microscope have indicated the potential viability of this novel approach.

Our objective is to minimize the extensive etching of the Lexan detector, both in terms of temperature and duration, in order to enhance traceability in the Lexan.

Tuesday Evening, November 7, 2023

Wednesday Morning, November 8, 2023

Actinides and Rare Earths Focus Topic Room C124 - Session AC+AS+TH-WeM

Nuclear Safeguards, Forensics, Environmental Science, and Stewardship

Moderators: Paul Roussel, AWE, David Shuh, Lawrence Berkeley National Laboratory, Evgeniya Tereshina-Chitrova, Charles University, Prague, Czech Republic

8:00am AC+AS+TH-WeM-1 Simulation Tools for Improvement of the Fission Track Analysis Method for Nuclear Forensics, Itzhak Halevy, Nuclear Engineering, Ben Gurion Uni. Be'er Sheva, Israel INVITED To answer nuclear forensics questions, we are developing new innovative techniques and approaches to make this analysis more reliable and accurate. Currently, only trained researchers can analyze microscope images. Since this analysis is dependent on the researcher's own abilities and skills, it is obvious that different researchers will produce results that are slightly distinct. A new worker's certification period is quite long, and it must cover numerous examples from previously measured data as well as some that we can only predict. A good simulation software can aid with training and provide a tool for grading new researchers.[1] The fission tracks were simulated by Monte-Carlo software, GEANT4, which uses all the physics behind the nuclear fission tracks, such as thermal neutrons flux, fission cross-section, radiation time, particle size, enrichment, etc. In this study, our Trainer2.0 software calculates the tracks on our Lexan detector and its projection, according to the physical parameters like neutron flax, size of the particle, the isotope, and radiation time. The result is a "star" centered on the simulated particle. Our full software is written with MatLab code.

We can simulate an extreme condition and learn new aspect in the fission track technique. From the simulation we can learn about the proper amount of material to use as a sample in the FTA technique.

The simulation can predict and compared to the mini-bulk and the microbulk analysis.

New idea of using penetrating fluorescent colors give as the ability to scan our detector in 3D instead of 2D. In this case we used the Dapi marker as a first shoot, this marker is well known for biomedical research.

This new idea to investigate the FT Star more than just by his projection.

Identifying the length of the tracks and their distribution allow us to determine the element source isotope be the shape of "fission products distribution" and the density of the impurities in the source.

References

[1] Halevy I., Admon U., Chinea-Cano E., Weiss A.M., Dzigal N., E. Boblil, Dagan M., Orion I. and Radus R. Investigations, Progress in Nuclear Science and Technology, 2018, v. 5; p. 175-178 3.3.

8:40am AC+AS+TH-WeM-3 Characterizing Actinides in Subsurface Sediments for Contaminant Remediation, Carolyn Pearce, H. Emerson, Pacific Northwest National Laboratory; C. Delegard, TradeWind Services LLC INVITED

The nuclear weapons fuel cycle consists of front-end steps to produce, extract, purify, and engineer plutonium, and back-end steps to safely manage, prepare, and dispose of radioactive wastes. Waste processing has resulted in the release of actinides to the subsurface worldwide, including the release of ~200 kg of plutonium and ~7 Kg of americium from process waste solutions to unconfined soil structures at the Hanford Site in Washington State. The subsurface mobility of actinides is influenced by complex interactions with sediments, groundwater, and any cocontaminants within the waste stream. Developing efficient remediation strategies for released actinides requires a complete understanding of retardation processes and mass flux, including the different mechanisms by which actinides are immobilized in the subsurface, and the effect of localized subsurface conditions. Here, sediments from Hanford waste disposal sites have been selected, based on historical information and sediment composition, for characterization of actinide (plutonium, americium, and uranium) immobilization mechanisms. Results show that the actinides are present in these samples as micron-sized particles, intrinsic and pseudo-colloids, and dissolved species, and that they have been significantly affected by the chemistry of the actinide-bearing waste source term. Spectroscopic characterization of actinides has also proved essential to understand their migration in the deep, unsaturated, vadose

zone sediments at the Hanford Site, due to the significant variability in solubility and mobility with speciation and oxidation state.

9:20am AC+AS+TH-WeM-5 Changes in Oxidation Mechanism with Relative Humidity: Application to Uranium Dioxide Powders, Scott Donald, L. Davisson, Lawrence Livermore National Laboratory INVITED It is of interest in nuclear forensic science to understand the relationship between an interdicted sample's history and the resulting chemical and physical characteristics. It may be possible to glean information on the environmental characteristics experienced by uranium dioxide from variations in the chemistry and structure of a powder sample. The reaction between high purity, stoichiometric UO₂ powder over a range of nominal conditions at room temperature was studied using a rage of techniques, including XPS. SEM. and TEM. to interrogate changes to both the surface and bulk properties of the material.Oxidation resulting from the interaction of the surface with the local environment was observed and quantified. A change in the reaction mechanism between low and high relative humidity has been proposed to describe the observed results.

The work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration.LLNL-ABS-848427

11:00am AC+AS+TH-WeM-10 Spatially Resolved Morphological and Chemical Analysis of Nuclear Materials, Brandon Chung, A. Baker, S. Donald, T. Li, R. Lim, U. Mehta, D. Rosas, S. Sen-Britain, D. Servando-Williams, N. Cicchetti, Lawrence Livermore National Laboratory; A. Ditter, D. Shuh, Lawrence Berkeley National Laboratory (LBNL)

Nuclear forensics requires accurate identification of distinguishing material characteristics of interdicted nuclear materials. Local morphological and chemical variations in nuclear materials are nearly ubiquitous due to the varying provenance, process, and pathways. We will describe our efforts to strengthen operational and scientific methodologies to employ the focused ion beam-scanning electron microscopy (FIB-SEM) on uranium (U) and plutonium (Pu) materials for direct three-dimensional (3D) morphological analysis or to prepare site-specific material features to obtain spatially resolved characterizations using transmission electron microscopy (TEM) and X-ray synchrotron spectromicroscopy. Both U and Pu materials show variations in the internal chemical composition and morphology from their production processes and storage environments. This information is of potential use in discriminating material signatures to identify the origin and history of interdicted nuclear materials

11:20am AC+AS+TH-WeM-11 Soft and Tender Spectromicroscopy for Nuclear Forensics at the Advanced Light Source, David Shuh, A. Ditter, Lawrence Berkeley National Laboratory (LBNL); N. Cicchetti, University of Nevada Las Vegas; R. Lim, S. Sen-Britain, D. Rosas, D. Servando-Williams, A. Baker, S. Donald, B. Chuna, Lawrence Livermore National Laboratory The development of new methods and signatures is crucial to ensure that nuclear forensics activities remain effective. Synchrotron radiation analysis offers one way to extend the scope of forensics investigations in elemental, chemical, and structural analysis which all can be done in imaging modes that in some cases, reaches to the nanoscale. X-ray techniques are particularly useful because of their elemental specificity and nondestructive nature. The ability to use tunable, focused beams makes synchrotron radiation sources a potentially key tool for addition into the array of characterization techniques currently employed, particularly when it comes to the investigation of particles or areas of interest in smaller specimens. Recent efforts at the Advanced Light Source conducting tender and soft spectromicroscopy using x-ray fluorescence (XRF; Beamline 10.3.2) and a scanning transmission x-ray microscope (STXM; Beamline 11.0.2). The XRF measurements provide elemental analysis at the micron scale, whereas the STXM can probe chemical speciation with a spatial resolution of better than 25 nm. Several uranium and plutonium specimens have been investigated using these techniques and the potential signatures from this data, as well as its utility, will be demonstrated. The outlook for synchrotron radiation within nuclear forensics including the strengths and drawbacks of these techniques will also be discussed.

Wednesday Afternoon, November 8, 2023

Actinides and Rare Earths Focus Topic Room C124 - Session AC+AS+MI+TH-WeA

Emerging Topics and Methods in Actinide/Rare Earth Sciences

Moderators: Edgar Buck, PNNL, Krzysztof Gofryk, Idaho National Laboratory, Liane Moreau, Washington State University

2:20pm AC+AS+MI+TH-WeA-1 Chemical Imaging and Applications Using High Energy Resolution Fluorescence Detection for the Actinides, Samuel Webb, N. Edwards, V. Noel, SLAC National Accelerator Laboratory INVITED Microscale synchrotron radiation-based x-ray fluorescence (SR-XRF) chemical analyses can provide a unique capability for chemical signature recognition and classification capabilities for actinide micro-particle analysis. SR-XRF is well suited to forensic type analyses of small particles because it is rapid, non-destructive, highly sensitive, has good spatial resolution, and can provide chemical information on the elements that are present when combined with x-ray absorption spectroscopy (XAS). The combination of spatially resolved distribution and chemical information, often known as chemical imaging, effectively provides a "chemical morphology" of the sample of interest and can show how chemical states are distributed within and among a series of particles. This type measurement is critical for understanding particle origin and history, as the spectroscopy, and its spatial distribution, can provide unique and complementary chemical signatures that may not be elucidated with other forms of measurement.

However, the conventional XAS capability in the near edge region as commonly implemented is often inadequate for systems that require high sensitivity or require a higher detail of spectroscopic information. This can be overcome with the combination of traditional micro SR-XRF and XAS, integrated with a high energy resolution fluorescence detector (HERFD) crystal analyzer. This has been recently implemented at BL 6-2b at SSRL and applied in the determination of the micron-scale oxidation state of uranium in particles. A discussion of the image and data processing techniques that can be applied using spatially resolved HERFD to obtain chemical and structural information, as well as the distribution of phases across different particles at the micro-scale, will also be presented.

3:00pm AC+AS+MI+TH-WeA-3 High Energy X-Ray Characterization of Microstructure at Macroscopic Depths in Pu Alloys, Donald Brown, Los Alamos National Laboratory; T. Carver, R. Pokharel, los alamos National Laboratory; A. Smith, los al; P. Kenesei, J. Park, Argonne National Laboratory INVITED

High energy (95keV) X-rays were utilized to characterize the microstructure of six PuGa alloy samples. The samples had different gallium content, age, and history (i.e. thermos-mechanical processing). The crystallographic textures, phase fractions, lattice parameters and dislocation densities of each sample were evaluated through distinct analysis techniques. The textures of the samples were modest. In each case, the dislocation densities were relatively high, comparable to cold worked metals, with some attributable to mechanical work and some likely due to selfirradiation damage (aging). The lattice parameters determined in the predominantly single-phase samples were larger than expected based on the nominal Ga concentration. The lattice parameter increase is attributed to self-irradiation induced Ga segregation leaving the matrix Ga lean. Finally, measurements of the lattice parameter were completed as a function of temperature to determine the crystallographic thermal expansion of the material.

4:20pm AC+AS+MI+TH-WeA-7 Native Oxide Growth of Pu-Ga Alloys, Kasey Hanson, S. Hickam, D. Olive, A. Pugmire, Los Alamos National Laboratory

Plutonium corrosion has proven to be an intricate area of research that garners considerable

attention. In particular, understanding plutonium oxidation is significant to the safe handling and

storage of plutonium metal, which is known to readily oxidize under ambient conditions. In order

to mitigate this, plutonium metal is commonly stored in inert atmospheres. These include

gloveboxes as well as ultra-high vacuum (UHV) chambers used for materials characterization.

The objective of this work is to measure oxidation rates of plutonium metal in various storage

environments. To achieve this, spectroscopic ellipsometry was selected due to its prevalence in

a variety of industries to measure thin-film thickness. A non-destructive technique, ellipsometry

exposes the sample to polarized light, and through changes in the amplitude ratio and phase

difference of the reflected vs. incident light, one can generate a material's optical properties that

can be used to determine oxide thicknesses.

Building upon previous work, this presentation will present the optical constants of plutonium

metal, achieved through the use of ion sputtering under UHV, and plutonium oxide formed on

plutonium metal in various storage and exposure conditions. These results will then be used to

model oxide thickness values directly from ellipsometry measurements as well as provide

additional insights into the nature of the oxide films relevant to plutonium storage and handling.

4:40pm AC+AS+MI+TH-WeA-8 Molecular Beam Epitaxy of Ternary Nitrides: From Transition Metals to Actinoids, Kevin Vallejo, Idaho National Laboratory; S. Gutierrez Ojeda, Universidad Nacional Autonoma de Mexico; G. Hernandez Cocoletzi, Benemerita Universidad Autonoma de Puebla, Mexico; S. Zhou, K. Gofryk, B. May, Idaho National Laboratory The exceptional properties of transition metal nitrides for coatings, as well as photo- and electrochemical applications have opened the doors for more detailed studies of their structure and synthesis. Mn- and Cr- nitrides are strong candidates to showcase the application of spintronic and magnetic sensing applications partially because of their ability to form several different metastable phases. Similarly, rare-earth nitrides have been studied for over 50 years due to their optical properties and strong electron correlations, leading to behaviors that range from insulating to metallic. This study uses molecular beam epitaxy to synthesize epitaxial thin films of different Mn-, Cr-, Ga-, and Ce-nitride phases. The electrical and magnetic properties of these films are investigated with the rocksalt MnN and CrN both showing metallic behavior, with the latter showing a magnetic transition ~280K. However, when combining these materials at similar growth conditions, instead of maintaining the rocksalt structure, a new ternary cubic phase of Mn_xCr_yN is obtained which shows narrow-gap semiconducting behavior. Additionally, density functional theory calculations show potential new phases where lanthanoid ternary phases are experimentally realizable. This work presents an avenue for the epitaxial integration of metallic, magnetic, and semiconductor materials via transition metal and lanthanoid compounds, en route to the synthesis of actinoid compounds.

5:00pm AC+AS+MI+TH-WeA-9 Formation and Electronic Properties of Uranium Tellurides: A Thin Films Study, Evgenia Tereshina-Chitrova, S. Alex, Institute of Physics CAS, Prague, Czechia; O. Koloskova, L. Horak, Charles University, Prague, Czechia; O. Romanyuk, Z. Soban, Institute of Physics CAS, Prague, Czechia; T. Gouder, F. Huber, JRC Karlsruhe, Germany Understanding the interaction of 5f electrons with other electrons in actinide compounds presents a significant challenge. Factors such as relativistic effects, strong electron correlations, and hybridization with ligands contribute to the complexity of observed effects. This complexity is exemplified in the case of the recently discovered unconventional superconductor UTe₂ [1]. The ongoing debate surrounding UTe₂ revolves around understanding its unconventional superconductivity, the nature of its electronic correlations [2,3], and the character of the 5f electrons. While it's evident that UTe2 exhibits intermediate occupancy of the 5f states at ambient pressure, there are two opposing interpretations of experimental findings regarding the degree of localization of the 5f electrons: the model based on 5f²6d¹ states with singlet crystal field states [4,5], and a 5f³-based model with atomic Kramers doublet and greater 5f itinerancy [6,7]. Interestingly enough, ab-initio calculations considering the 4f² U-ion ground state multiplet reproduce bulk experimental observations, such as the Schottky anomaly and magnetic anisotropy at low temperatures [8].

To contribute to this subject, we provide a comprehensive and detailed investigation of thin films of uranium tellurides with various compositions $U_x Te_y$ by means of X-ray Photoelectron Spectroscopy (XPS) and Ultra-violet Photoelectron Spectroscopy (UPS). We also explore the structural and bulk

Wednesday Afternoon, November 8, 2023

properties of the films, including their magnetic and transport characteristics. This comprehensive approach allows us to correlate the changes in XPS spectra across different compositions and crystal structures with resultant bulk properties, contributing to our understanding of the nature of the 5f electrons within uranium tellurides.

The work by E.A. T.-Ch. is supported by the Czech Science Foundation (GAčr) under the grant number 22-19416S. E.A. Ch.-T. is a recipient of the L'Oreal-UNESCO for Women in Science prize.

[1] S. Ran et al., Science 365, 684 (2019).

- [2] I. M. Hayes et al., Science, 373, 797 (2021).
- [3] C. Duan et al., Phys. Rev. Lett. 125, 237003 (2020).
- [4] L. Miao et al., Phys. Rev. Lett.124, 076401 (2020).
- [5] S. Liu et al., Phys. Rev. B 106, L241111 (2022).
- [6] S. Fujimori et al., J. Phys. Soc. Jpn. 88, 103701 (2019).
- [7] F. Wilhelm, Commun. Phys. 6, 96 (2023).

[8] S. Khmelevsyi et al., Phys. Rev. B 107, 214501 (2023).

5:20pm AC+AS+MI+TH-WeA-10 Nanoscale Uranium and Thorium Oxides for Applications in Advanced Nuclear Fuels, *Matthew Heaney*, *L. Moreau*, *X. Guo*, Washington State University

Nanomaterials of uranium and thorium oxides and their mixtures are of significance to the development of advanced nuclear fuels with properties such as self-healing and greater fission gas retention. They also serve as a means for furthering our understanding of spent nuclear fuel behaviors. Furthermore, thorium incorporation into the uranium sublattice induces changes in oxidation behavior, which would be a promising means to provide additional redox resistance. Coupling this with the possible application in fast neutron reactors presents a potential fuel for the Th fuel cycle, which is inherently proliferation resistant. However, these possible applications are purely hypothetical given that, compared to nanomaterials from the rest of the periodic table, actinide nanomaterials are heavily understudied. Therefore, it will be imperative to interrogate the properties of these nanomaterials. This work aims to explore three key areas. (1) How careful kinetic control through variations in synthetic methods can be used to produce particles with different sizes, shapes, and heterogeneities of mixing. (2) Elucidation of the structural and thermodynamic properties of these nanomaterials and how characteristic size, shape, and heterogeneity of mixing affect them through a variety of X-ray characterization and calorimetry techniques. X-ray characterization techniques such as X-ray absorption spectroscopy (XAS) is used to evaluate the heterogeneity of mixing, local structure, and oxidation state of particles while small-angle Xray scattering (SAXS) is used to determine statistical values on particle size, shape, and polydispersity. Calorimetry techniques like high temperature drop calorimetry are used to determine enthalpies of formation for nanoparticles and the contribution surface effects have on the thermodynamics or thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), which can be used to evaluate oxidation behaviors. (3) How sintered nanoparticles behave in in-situ reactor conditions as nuclear fuels and how particle characteristics can be chosen to achieve more desirable radiation-resistance and thermal properties for nuclear fuel, through irradiation studies performed at the 1-MW TRIGA reactor on the campus of Washington State University. Overall, the work presented provides initial evidence for the benefits of nanomaterials in the production of advanced reactor fuels and outlines important fundamental properties of actinides on the nanoscale.

Thursday Morning, November 9, 2023

Light Sources Science Mini-Symposium Room C124 - Session LS+AC+LX+MI+TH-ThM

Tender X-ray Science and Time Resolved Studies

Moderators: Alison Pugmire, LANL, David Shuh, Lawrence Berkeley National Laboratory, James G. Tobin, University of Wisconsin-Oshkosh

8:00am LS+AC+LX+MI+TH-ThM-1 Developments of High Resolution X-Ray Spectroscopic Tools for Probing Structural Properties of Actinide System from the Metal and Ligand Perspective, *Tonya Vitova*, Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, Germany INVITED

High energy resolution X-ray absorption and emission spectroscopic techniques became indispensable methods in actinide and radionuclide research.¹⁻⁵ One important motivation is studies concerning the mobilization and retention of long-lived actinides and fission products in geochemical processes relevant for safety studies of a potential deep geological nuclear waste repository.³⁻⁴ In-depth insights into the actinideligand binding properties is a main application of these novel experimental techniques too.⁶ Development at the ACT experimental station of the CAT-ACT wiggler beamline at the Karlsruhe Institute of Technology (KIT) Light Source will be discussed. One experimental technique especially powerful to differentiate oxidation states of actinides (An) is the An M_{4,5}-edge highenergy resolution X-ray absorption near-edge structure (HR-XANES).⁴ This presentation highlights the latest technological developments at the ACT station enabling the HR-XANES spectroscopic technique for samples with low radionuclide loading down to 1 ppm in combination with a cryogenic sample environment reducing beam-induced sample alterations.⁷⁻⁸ It paves the way for the examination of coupled redox/solid-liquid interface reactions.8 Examples of applications of An M4,5 edge core-to-core and valence band resonant inelastic X-ray scattering (CC-RIXS and VB-RIXS) for probing the electronic structure and binding properties of the actinide elements will be illustrated.⁶ First results obtained using a newly developed versatile chamber for soft X-ray spectroscopy at the X-SPEC beamline at the KIT Light Source will be discussed.

This work has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 847593. We also acknowledge funding from the ERC Consolidator Grant 2020 under the European Union's Horizon 2020 research and innovation program (grant agreement No. 101003292).

References

- 1. Vitova, T. et al., Inorganic Chemistry 2020,59 (1), 8-22.
- 2. Vitova, T. et al., Chem Commun 2018,54 (91), 12824-12827.
- 3. Vitova, T. et al., *Nature Communications* **2017**,*8*, 16053.
- 4. Pidchenko, I. et al., Environ Sci Technol 2017,51 (4), 2217-2225.
- 5. Bagus, P. S. et al., Inorganic Chemistry 2021,60 (21), 16090-16102.
- 6. Vitova, T. et al., Chem Sci 2022,13 (37), 11038-11047.
- 7. Schacherl, B. et al., J Synchrotron Radiat 2022,29 (1), 80-88.
- 8. Schacherl, B. et al., Anal Chim Acta 2022, 1202, 339636.

8:40am LS+AC+LX+MI+TH-ThM-3 High-Energy-Resolution X-Ray Spectroscopy and Actinides Research at SLAC, Dimosthenis Sokaras, SLAC National Accelerator Laboratory INVITED

Nowadays, high-energy-resolution x-ray spectroscopy is a well-established and powerful tool available in state-of-the art synchrotron facilities. The suppression of the core-hole lifetime contribution within the conventionally broad spectroscopic features of actinide series has revitalized the role of xray spectroscopy in the study of actinide complexes and intermetallics. Numerous studies have leveraged the fine structure of M or L absorption edge resonances to sensitively probe and quantify the oxidation state, 5f delocalization, and ligation of the actinides species. The increasing availability of large solid angle instruments coupled with high flux beamlines is quickly enabling such advanced studies for dilute samples or samples under special sample environments. In this presentation we will summarize the high-resolution tender and hard x-ray spectroscopy advances at SLAC and the actinides research program that these capabilities have enabled during the last decade. 9:20am LS+AC+LX+MI+TH-ThM-5 New Insight Into Excited-State Chemical Dynamics Using Ultrafast X-Rays:Recent Highlights, Future Opportunities & Development Plans at LCLS, Robert Schoenlein, Linac Coherent Light Source - SLAC National Accelerator Laboratory INVITED Ultrafast X-rays from free-electron lasers (XFELs) are driving a qualitative advance in our understanding of condensed-phase chemical dynamics and catalysis. Ultrafast soft X-rays provide element-specific mapping of chemical bonds, charge distributions, oxidation states and frontier orbitals. Ultrafast hard X-ray pulses reveal the atomic scale structural dynamics of excitedstate dynamics - revealing relaxation pathways, and the coupling of atomic structure, electronic structure, and solvent dynamics. This talk will highlight recent results from the Linac Coherent Light source (LCLS) using advanced ultrafast X-ray methods to track excited-state charge-transfer and relaxation pathways, and reveal the influence of molecular structural dynamics, and solvent coupling. Notably, multi-modal methods combining time-resolved X-ray scattering and spectroscopy represent a powerful approach for linking X-ray experimental observables with theory to achieve a deeper understanding of excited-state dynamics to advance the development of design principles for creating molecules, complexes, and assemblies with desired functions.

In addition, new science opportunities enabled by the nearly-completed upgrade of LCLS (LCLS-II) coupled with advanced instrumentation and methods will be discussed. LCLS-II will provide tunable soft X-ray pulses (0.25 to 5.0 keV) at high repetition rate (up to 1 MHz) and hard X-rays up to 25 keV (at 120 Hz). This unprecedented capability will support powerful new methods such as time-resolved resonant inelastic X-ray scattering (RIXS). The new ChemRIXS instrument is optimized for studying solvated complexes with C, N, O (K-edges), 3d transition metals (L-edges), and rareearth elements (M-edges) - where 2D RIXS maps of excited-state dynamics coupled with guantum chemical calculations will reveal the evolution of frontier orbitals. The Tender X-ray Instrument (TXI, 2.1-5.0 keV), now under development for LCLS-II, will support time-resolved tender X-ray spectroscopy (spanning the 4d transition metal L-edges and key functional ligands including P, S, and Cl), coherent scattering, and novel nonlinear Xray pump / X-ray probe methods - combining X-rays from two independently tunable XFEL sources.

11:00am LS+AC+LX+MI+TH-ThM-10 Attosecond Studies of Radiolysis at XFELs, *Linda Young*, Argonne National Laboratory INVITED

We report the first attosecond x-ray pump/x-ray probe transient absorption study in condensed phases using a pure liquid water target. With tunable two-color attosecond x-ray pulses, the pump ionizes the valence band of water and the probe scans the oxygen K-edge absorption region. Theory establishes the nature of the detected transient absorption and models the observed signal for sub-femtosecond delay times.

Acknowledgements: This work supported in part by by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under award # DEAC02-06CH11357. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

critical importance for fields ranging from cancer therapy to the longevity of nuclear reactors to space travel. In these applications, radiolysis is initiated by a high-energy particle that leads to the ejection of energetic primary electrons followed by inelastic and non-adiabatic processes that produce damaging low energy electrons and reactive radical species. A microscopic understanding of reaction mechanisms, especially in complex systems, is missing as typical techniques used to detect prominent species, EPR and UV spectroscopies, lack either time resolution or spectral clarity. Tunable ultrafast x rays can dissect the radiolysis process. That is, x-ray pump/x-ray probe studies can systematically either peel electrons from valence, or, eject them from core orbitals and follow the ensuing dynamics on a sitespecific basis.

Thursday Morning, November 9, 2023

11:40am LS+AC+LX+MI+TH-ThM-12 First Real-Time Tracking of Oxidation States During Fast Redox of UO₂ Using a Microfluidic Electrochemical Cell and HR-XANES, Jennifer Yao, Pacific Northwest National Laboratory; B. Schacherl, Karlsruhe Institute of Technology (KIT), Germany; B. McNamara, Pacific Northwest National Laboratory; C. Vollmer, Karlsruhe Institute of Technology (KIT), Germany; N. Lahiri, E. Ilton, E. Buck, Pacific Northwest National Laboratory; T. Vitova, Karlsruhe Institute of Technology (KIT), Germany

Real-time tracking of the oxidation states of a UO₂ electrode during electrochemical oxidation and reduction was achieved using operando high-resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy at the ACT station of the CAT-ACT beamline at the KIT Light Source, Karlsruhe, Germany. This was made possible by utilizing a particleattached microfluidic electrochemical cell (PAMEC) developed at PNNL, and employing KIT's advanced actinide M-edge HR-XANES technique.¹⁻² The PAMEC is a three-electrode system consisting of a working electrode (WE) made of the materials of interest a platinum (Pt) reference electrode, and a Pt counter electrode.³ The electrochemical analyzer connected to the PAMEC device controlled the redox process, e.g., applying constant potential on the UO₂ WE to reduce (-1.1 V vs Pt) or oxidize it (0.5 V vs Pt), while HR-XANES simultaneously scanned its surface chemistry. The U M₄edge HR-XANES spectra revealed the evolution of U from U(IV) to U(V) and finally to U(VI) during the oxidation process. We were able to demonstrate the reversibility of this process by reducing the same electrode back to pure U(IV), as confirmed by HR-XANES. To our knowledge, this study reports the first in-situ and operando measurement of real-time oxidation state changes of UO2. The spectra obtained also provided insight into the electronic structure of U(VI) in the UO2 alteration process. This successful international scientific collaboration showcases the potential of a PAMEC for in-situ and operando experiments with UO2 and highlights its promising broad application for characterization of spent nuclear fuel systems.

References:

(1) Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H., The role of the 5f valence orbitals of early actinides in chemical bonding. *Nature Communications* **2017**,*8*, 16053. 10.1038/ncomms16053

(2) Schacherl, B.; Prüssmann, T.; Dardenne, K.; Hardock, K.; Krepper, V.; Rothe, J.; Vitova, T.; Geckeis, H., Implementation of cryogenic tender X-ray HR-XANES spectroscopy at the ACT station of the CAT-ACT beamline at the KIT Light Source. *Journal of synchrotron radiation* **2022**,*29*, 80-88. 10.1107/s1600577521012650

(3) Yao, J.; Lahiri, N.; Tripathi, S.; Riechers, S. L.; Ilton, E. S.; Chatterjee, S.; Buck, E. C., A microfluidic electrochemical cell for studying the corrosion of uranium dioxide (UO2). *RSC Advances* **2022**,*12*, 19350-19358. 10.1039/D2RA02501A

12:00pm LS+AC+LX+MI+TH-ThM-13 Use of Artificial Intelligence Techniques To Analyze Materials Characterization Data From Actinide Containing Materials, Jeff Terry, Illinois Institute of Technology We have developed artificial intelligence (AI) based methodology that can be utilized to reliably analyze experimental results from Extended X-ray Absorption Fine Structure (EXAFS), Nanoindentation, and core level photoemission. Specifically, we use a genetic algorithm to extract the relevant structural parameters through fitting of the measured spectra. The current approach relies on a human analyst to suggest a potential set of chemical compounds in the form of feff.inp input files that may be present. The algorithm then attempts to determine the best structural paths from these compounds that are present in the experimental measurement. The automated analysis looks for the primary EXAFS path contributors from the potential compounds. It calculates a goodness of fit value that can be used to identify the chemical moieties present. The analysis package is called EXAFS Neo and is open source written in Python. I will illustrate the use of this package with fits of actinide species in the barrier layer of Tristructuralisotropic (TRISO) encapsulated nuclear fuel particles. The current particle design consists of a two-phase uranium-oxide/uranium-carbide kernel of 19.74% ²³⁵U enrichment, a porous carbon buffer layer, and consecutive layers of pyrolytic carbon, silicon carbide (SiC) and pyrolytic carbon. The SiC layer provides the main barrier to fission product release. Much work has gone towards studying metallic fission product interaction in the SiC containment layer due to the propensity of metallic fission product release as a function of high temperature (safety) testing. Here, I will show how the interaction dynamics of plutonium and uranium within this layer have been determined through EXAFS measurements that have been fit with AI. One of the major benefits of using this technology is that actinide containing

materials often have edges from higher Z-elements that limit the usable range of the spectrum. Our method fits momentum space data which does not suffer from transformation artifacts of real space over a small momentum range.

Thursday Afternoon, November 9, 2023

Light Sources Science Mini-Symposium Room C124 - Session LS+AC+AS+LX+MI+TH-ThA

Facility Upgrades and Recent Capability Development

Moderators: David Shuh, Lawrence Berkeley National Laboratory, James G. Tobin, University of Wisconsin-Oshkosh, Gertrud Zwicknagl, Technical University Brauschweig

2:20pm LS+AC+AS+LX+MI+TH-ThA-1 The Impact of Upgraded High-Brightness Synchrotron Lightsources on the Chemical Speciation of Nanoscale Heterogeneous Aggregates and Transformations, Andreas Scholl, Advanced Light Source, Lawrence Berkeley National Laboratory INVITED

ALS-U is an ongoing upgrade of the Advanced Light Source (ALS) at Berkeley Lab that will endow the ALS with revolutionary x-ray capabilities. The new storage ring will enable the production of highly focused beams of soft x-ray light that are at least 100 times brighter than those of the existing ALS. Applying this technology at the ALS will help us better understand and develop new materials and chemical systems needed to advance our research needs in energy science, environmental systems research, and biosciences in the 21st century. This will create a world-leading platform for next-generation soft x-ray and tender x-ray instrumentation.

Four beamlines with new and upgraded capabilities will become available after the upgrade. The FLEXON beamline (FLuctuation and EXcitation of Orders in the Nanoscale), a high-brightness coherent soft x-ray beamline, will provide x-ray photon correlation spectroscopy and diffraction imaging techniques to study electronic, chemical, and magnetic fluctuations in quantum materials with nanosecond temporal and nanometer spatial resolution. A new ALS-U developed tender x-ray beamline is designed to address challenges at the frontiers of diverse scientific areas, ranging from soft condensed matter and biomaterials to energy science and Earth and environmental sciences. It will offer state-of-the-art nanometer-resolved chemical imaging and resonant scattering nanoprobes, enabling operando and in situ studies of materials of K-edges of elements (Na through Ca) and the M and L edges of lanthanides and actinides. These two beamlines will be complemented by two upgraded beamlines for nanometer 3D chemical tomography based on ptychography of light elements and first-row transition metals and for high-resolution ARPES.

The high coherent flux of the upgraded ALS will drastically improve the speed, sensitivity, and spatial resolution of nanoprobes, enabling the speciation and forensic study of nanoscale constituents and contaminants via x-ray absorption spectroscopy and fluorescence detection. Chemical signatures can be correlated with morphology and compared with chemical standards. Operando experiments, for example, of liquid phase systems and studies under ambient conditions, will be enabled by specially designed sample holders and liquid cells using the high penetration of tender x-rays.

3:00pm LS+AC+AS+LX+MI+TH-ThA-3 The Advanced Photon Source Upgrade: A transformative tool for understanding material structure., Jonathan Lang, J. Lang, Argonne National Laboratory INVITED The APS is currently undergoing a major upgrade of the facility that will increase the brightness of the x-ray beams by factors of up to 500. This upgrade will provide transformational capabilities for examining the nanoscale structure and electronic configuration of materials and their evolution with external stimuli. This presentation with provide an update on the current status of the APS-U project, and discuss the new opportunities for imaging actinide and rare-earth compounds with this new source

3:40pm LS+AC+AS+LX+MI+TH-ThA-5 Combining Focused Ion Beam Sectioning, Soft X-ray Spectromicroscopy, and Non-Negative Matrix Factorization to Reveal Acrtinide Chemical Speciation at the Nanoscale, *Alexander Ditter*, *D. Smiles*, *J. Pacold*, *D. Lussier*, Lawrence Berkeley National Laboratory; *Z. Dai*, Lawrence Livermore National Laboratory; *A. Altman*, Lawrence Berkeley National Laboratory; *M. Bachhav*, Idaho National Laboratory; *B. Chung*, Lawrence Livermore National Laboratory; *C. Degueldre*, Lancaster University, UK; *S. Donald*, Lawrence Livermore National Laboratory; *L. He*, Idaho National Laboratory; *M. Mara*, *S. Minasian*, *D. Shuh*, Lawrence Berkeley National Laboratory Spectromicroscopy methods, combining the chemical insight of spectroscopy with microscopy imaging, can give a unique and informative view of a sample of interest. Scanning Transmission X-ray Microscope (STXM) spectromicroscopy is one such method, utilizing synchrotron radiation to probe electronic structure with a spatial resolution in the tens of nanometers. Specialized methods like ptychography can push the spatial resolution even lower into the single nanometer range.

Discussed here, STXM spectromicroscopy is applied to two actinide samples: spent nuclear fuel, which offers a unique insight into the complex environment of nuclear fuel undergoing burnup, and uranium oxide allowed to age in a humid environment, which serves as a demonstration of the power of this technique for nuclear forensics investigations. These samples are created by focused ion beam (FIB) sectioning to generate crosssections of ideal thickness for soft x-ray measurements (100-200 nm). The FIB method of sample preparation also allows for the measurement of highly radioactive spent fuel without containment due to the extremely small amount of material present.

Data analysis is a key component to the understanding of spectromicroscopy results for varied samples like these. Non-negative matrix factorization (NMF) is employed to identify key components and recent efforts to improve NMF to work with noisy individual STXM spectra are outlined here. Reproducibility of the analysis is a concern (as with similar methods like multivariate curve regression) and methods to enhance both reproducibility and interpretability of the results are discussed.

Combining STXM spectromicroscopy, FIB sectioning, and NMF analysis has allowed for unique insights into actinide materials. Potential future developments utilizing this method for other samples and with advanced techniques like ptychography are also discussed.

Author Index

— A — Ajo, H.: AC-TuP-2, 5 Albrecht-Schoenzart, T.: AC+MI+TH-TuA-7, 3 Alex, S.: AC+AS+MI+TH-WeA-9, 7 Allen, J.: AC+MI+TH-TuM-10, 2 Alonso-Mori, R.: AC+MI+TH-TuM-13, 2 Altman, A.: LS+AC+AS+LX+MI+TH-ThA-5, 11 - B -Babayew, R.: AC-TuP-3, 5 Bachhav, M.: LS+AC+AS+LX+MI+TH-ThA-5, 11 Baker, A.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11.6 Baumbach, R.: AC+MI+TH-TuM-10, 2 Beaux, M.: AC+MI+TH-TuA-12, 4 Bretaña, A.: AC+MI+TH-TuM-6, 1; AC-TuP-2, 5 Brown, D.: AC+AS+MI+TH-WeA-3, 7 Buck, E.: LS+AC+LX+MI+TH-ThM-12, 10 Butch, N.: AC+MI+TH-TuM-10, 2 Buturlim, V.: AC+MI+TH-TuM-11, 2; AC+MI+TH-TuM-4, 1 - C -Carver, T.: AC+AS+MI+TH-WeA-3, 7 Celis-Barros, C.: AC+MI+TH-TuA-7, 3 Chung, B.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11, 6; LS+AC+AS+LX+MI+TH-ThA-5, 11 Cicchetti, N.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11, 6 — D — Dai, Z.: LS+AC+AS+LX+MI+TH-ThA-5, 11 Daul. C.: AC+MI+TH-TuM-13.2 Davisson, L.: AC+AS+TH-WeM-5, 6 Degueldre, C.: LS+AC+AS+LX+MI+TH-ThA-5, 11 Delegard, C.: AC+AS+TH-WeM-3, 6 Denlinger, J.: AC+MI+TH-TuM-10, 2 Ditter, A.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11, 6; LS+AC+AS+LX+MI+TH-ThA-5, 11 Divis, M.: AC+MI+TH-TuM-11, 2 Doležal. P.: AC+MI+TH-TuM-11. 2 Donald, S.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11, 6; AC+AS+TH-WeM-5, 6; LS+AC+AS+LX+MI+TH-ThA-5, 11 Dudy, L.: AC+MI+TH-TuM-10, 2 — E — Edwards, N.: AC+AS+MI+TH-WeA-1, 7 Elgad, N.: AC-TuP-3, 5 Emerson, H.: AC+AS+TH-WeM-3, 6 — F — Fricke, C.: AC+MI+TH-TuA-10, 3 — G — Gaiser, A.: AC+MI+TH-TuA-7, 3 Gallagher, A.: AC+MI+TH-TuM-10, 2 Gofryk, K.: AC+AS+MI+TH-WeA-8, 7; AC+MI+TH-TuM-11, 2; AC+MI+TH-TuM-6, 1 Gouder, T.: AC+AS+MI+TH-WeA-9, 7 Greer, R.: AC+MI+TH-TuM-6, 1 Guo, X.: AC+AS+MI+TH-WeA-10, 8

Gutierrez Ojeda, S.: AC+AS+MI+TH-WeA-8, 7

Bold page numbers indicate presenter

— H -Halevy, I.: AC+AS+TH-WeM-1, 6; AC-TuP-3, 5 Hanson, K.: AC+AS+MI+TH-WeA-7, 7 Havela, L.: AC+MI+TH-TuM-11, 2; AC+MI+TH-TuM-4.1 He, L.: LS+AC+AS+LX+MI+TH-ThA-5, 11 Heaney, M.: AC+AS+MI+TH-WeA-10, 8 Hernandez Cocoletzi, G.: AC+AS+MI+TH-WeA-8.7 Hernandez, S.: AC+MI+TH-TuA-10, 3 Hickam, S.: AC+AS+MI+TH-WeA-7, 7 Honda, F.: AC+MI+TH-TuM-11, 2; AC+MI+TH-TuM-4, 1 Horak, L.: AC+AS+MI+TH-WeA-9, 7 Housley, C .: AC-TuP-2, 5 Hoyer, C.: AC+MI+TH-TuA-1, 3 Huber, F.: AC+AS+MI+TH-WeA-9, 7 -1-Ilton, E.: LS+AC+LX+MI+TH-ThM-12, 10 — K — Kaczorowski, D.: AC+MI+TH-TuM-11, 2; AC+MI+TH-TuM-4, 1 Kang, J.: AC+MI+TH-TuM-10, 2 Katarivas Levy, G.: AC-TuP-3, 5 Kenesei, P.: AC+AS+MI+TH-WeA-3, 7 Kolorenc, J.: AC+MI+TH-TuM-5, 1 Koloskova, O.: AC+AS+MI+TH-WeA-9, 7; AC+MI+TH-TuM-11, 2 Kroll, T.: AC+MI+TH-TuM-13, 2 - L -Lahiri, N.: LS+AC+LX+MI+TH-ThM-12, 10 Lang, J.: LS+AC+AS+LX+MI+TH-ThA-3, 11 Li, T.: AC+AS+TH-WeM-10, 6 Li, X.: AC+MI+TH-TuA-1, 3 Lim, R.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11.6 Lorincik, J.: AC-TuP-3, 5 Lussier, D.: LS+AC+AS+LX+MI+TH-ThA-5, 11 — M — Maple, M.: AC+MI+TH-TuM-10, 2 Mara, M.: LS+AC+AS+LX+MI+TH-ThA-5, 11 Martinez Celis, M.: AC+MI+TH-TuM-11, 2 May, B.: AC+AS+MI+TH-WeA-8, 7 McNamara, B.: LS+AC+LX+MI+TH-ThM-12, 10 Mehta. U.: AC+AS+TH-WeM-10. 6 Minasian, S.: LS+AC+AS+LX+MI+TH-ThA-5, 11 Moreau, L.: AC+AS+MI+TH-WeA-10, 8; AC+MI+TH-TuA-11, 3 Morrison, G.: AC+MI+TH-TuM-6, 1; AC-TuP-2, 5 -N -Noel, V.: AC+AS+MI+TH-WeA-1, 7 Nordlund, D.: AC+MI+TH-TuM-13, 2 Nowak, S.: AC+MI+TH-TuM-13, 2 -0-Olive, D.: AC+AS+MI+TH-WeA-7, 7 Orion, I.: AC-TuP-3, 5 - P -Pacold, J.: LS+AC+AS+LX+MI+TH-ThA-5, 11 Park, J.: AC+AS+MI+TH-WeA-3, 7

Pearce, C.: AC+AS+TH-WeM-3, 6 Pokharel, R.: AC+AS+MI+TH-WeA-3, 7 Prchal, J.: AC+MI+TH-TuM-11, 2 Pugmire, A.: AC+AS+MI+TH-WeA-7, 7 — R — Rai, B.: AC+MI+TH-TuM-6, 1; AC-TuP-2, 5 Ramanantoanina, H.: AC+MI+TH-TuM-13, 2 Roagelv, A.: AC+MI+TH-TuM-1, 1 Romanyuk, O.: AC+AS+MI+TH-WeA-9, 7 Rosas, D.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11, 6 Roussel, P.: AC+MI+TH-TuA-9, 3; AC+MI+TH-TuM-13, 2 Rudin, S.: AC+MI+TH-TuM-12, 2 — S — Schacherl, B.: LS+AC+LX+MI+TH-ThM-12, 10 Schoenlein, R.: LS+AC+LX+MI+TH-ThM-5, 9 Scholl, A.: LS+AC+AS+LX+MI+TH-ThA-1, 11 Sen-Britain, S.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11, 6 Servando-Williams, D.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11, 6 Shuh, D.: AC+AS+TH-WeM-10, 6; AC+AS+TH-WeM-11, 6; LS+AC+AS+LX+MI+TH-ThA-5, 11 Smiles, D.: LS+AC+AS+LX+MI+TH-ThA-5, 11 Smith, A.: AC+AS+MI+TH-WeA-3, 7 Soban, Z.: AC+AS+MI+TH-WeA-9, 7 Sokaras, D.: AC+MI+TH-TuM-13, 2; LS+AC+LX+MI+TH-ThM-3, 9 Svanidze, E.: AC+MI+TH-TuM-3, 1 - T -Tereshina-Chitrova, E.: AC+AS+MI+TH-WeA-9,7 Terry, J.: LS+AC+LX+MI+TH-ThM-13, 10 Tobin, J.: AC+MI+TH-TuM-13, 2 Turek, I.: AC+MI+TH-TuM-11, 2 -v -Vallejo, K.: AC+AS+MI+TH-WeA-8, 7 Vitova, T.: LS+AC+LX+MI+TH-ThM-1, 9; LS+AC+LX+MI+TH-ThM-12, 10 Vollmer, C.: LS+AC+LX+MI+TH-ThM-12, 10 - w -Webb, S.: AC+AS+MI+TH-WeA-1, 7 Weiss, A.: AC-TuP-3, 5 Weng, T.: AC+MI+TH-TuM-13, 2 White, F.: AC+MI+TH-TuA-7, 3 Wilhelm, F.: AC+MI+TH-TuM-1, 1 Wray, L.: AC+MI+TH-TuM-10, 2 - Y -Yaita, T.: AC+MI+TH-TuA-3, 3 Yao, J.: LS+AC+LX+MI+TH-ThM-12, 10 Yehuda-Zada, Y.: AC-TuP-3, 5 Young, L.: LS+AC+LX+MI+TH-ThM-10, 9 Yu, S.: AC+MI+TH-TuM-13, 2 - Z -Zhou, S.: AC+AS+MI+TH-WeA-8, 7 zur Loye, H.: AC+MI+TH-TuM-6, 1; AC-TuP-2,

5